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Innovation is the key 
to the future, but basic 
research is the key to 
future innovation.
 – Jerome Isaac Friedman,  

Nobel Prize Recipient (1990)

Preface
Over the past century, science and technology has brought 
remarkable new capabilities to all sectors of the economy; 
from telecommunications, energy, and electronics to medicine, 
transportation and defense. Technologies that were fantasy 
decades ago, such as the internet and mobile devices, now 
inform the way we live, work, and interact with our environment. 
Key to this technological progress is the capacity of the 
global basic research community to create new knowledge 
and to develop new insights in science, technology, and 
engineering. Understanding the trajectories of this fundamental 
research, within the context of global challenges, empowers 
stakeholders to identify and seize potential opportunities. 

The Future Directions Workshop series, sponsored by the 
Basic Research Directorate of the Office of the Under Secretary 
of Defense for Research and Engineering, seeks to examine 
emerging research and engineering areas that are most likely 
to transform future technology capabilities. These workshops 
gather distinguished academic researchers from around 
the globe to engage in an interactive dialogue about the 
promises and challenges of each emerging basic research 
area and how they could impact future capabilities. Chaired 
by leaders in the field, these workshops encourage unfettered 
considerations of the prospects of fundamental science areas 
from the most talented minds in the research community. 

Reports from the Future Direction Workshop series capture 
these discussions and therefore play a vital role in the discussion 
of basic research priorities. In each report, participants are 
challenged to address the following important questions:

• How will the research impact science and 
technology capabilities of the future?

• What is the trajectory of scientific achievement 
over the next few decades?

• What are the most fundamental challenges to progress? 

This report is the product of a workshop held July 16-17, 
2019 at the Basic Research Innovation Collaboration Center 
in Arlington, VA on the future of human machine teaming 
research. It is intended as a resource to the S&T community 
including the broader federal funding community, federal 
laboratories, domestic industrial base, and academia.
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Executive Summary
Interactions with technologically sophisticated artificial 
intelligence (AI) agents are now commonplace. We 
increasingly rely on intelligent systems to extend our human 
capabilities, from chatbots that provide technical support 
to virtual assistants like Siri and Alexa. However, today's 
intelligent machines are essentially tools, not teammates. 
They require the undivided attention of a human user and 
lack the communicative or cognitive capabilities needed to 
interact as trusted teammates. To become true teammates, 
the intelligent machines will need to be flexible and 
adaptive to the states of the human teammate, as well the 
environment. They will need to intelligently anticipate their 
human teammate’s capabilities, intentions, and generalize 
specific learning experiences to entirely new situations.

On July 16-17, 2019, a Future Directions of Human Machine 
Teaming workshop was held at the Basic Research Innovation 
Collaboration Center in Arlington, VA to examine the basic 
research challenges and opportunities to enable this level 
of human machine teaming. Hosted by the Basic Research 
Office in the Office of the Under Secretary of Defense for 
Research and Engineering, this workshop gathered 21 
distinguished researchers from the AI, robotics, cognitive 
science, psychology, and neuroscience communities across 
academia, industry, and government. Participants debated 
and discussed how research in these different areas can inform 
how humans and intelligent machines can work together.

The workshop participants considered current research 
areas in AI and cognitive sciences, discussed challenges and 
knowledge gaps, and promising areas for future research 
advances. This report is the product of those discussions, 
summarizing the key research challenges, opportunities, and 
trajectory for research needed to enable true human machine 
teaming. Several key themes emerged for human machine 
teaming that we present as a model framework where each 
teammate creates mental representations of self, teammate, 
and the team that guide perception, communication, and 
joint action. With this framework in mind, the research 
challenges and opportunity areas are divided into four topics: 

Human Capabilities: Natural Intelligence – research 
to better understand human cognitive capabilities in 
the context of complex and dynamic situations. 

Challenges include understanding the human ability to create 
mental representations of situations (“mental models”), 
the goals, intentions, and abilities of other people (“theory 
of mind”), and shared knowledge with a communication 
partner (“common ground”). In addition, we need a better 
understanding of how humans learn from single events, to 
make predictions and generalizations in new situations, and to 
build knowledge about situations and events that can guide 
reasoning and deductive inferences (“common sense”). 

Research Areas include communication studies to understand 
natural language in real-world situations that can be used 
to scale up computational models that integrate real-world 
complexity and uncertainty; learning studies to understand the 
human capability to learn from single instances, generalize where 
appropriate, and show transfer to new situations; curiosity studies 
that examine the factors that drive active information seeking 
and exploration to actively generate questions in order to fill 
in knowledge gaps; task learning and generalization studies 
that characterize how tasks can be represented in a manner 
that is compositional, such that information can be reused and 
recombined across tasks; task control and multi-threading studies 
to understand the constraints on the human operator and the 
nature of task representations; integrated cognition studies for 
complex, dynamic environments to develop integrated cognitive 
and brain-inspired models in which different processes interact 
in a manner that can emulate human performance; and systems 
that decode neural signals for human machine interactions. 

Human Models of Machines – research to understand what 
humans must know and learn about machines and their 
physical and internal structure in order to effectively and 
efficiently interact with them, including what is required in 
human machine teaming to establish and maintain trust. 

Challenges include understanding how humans represent and 
reason about machine mental and physical abilities; defining 
the level of machine description needed; and the level of 
transparency required to get humans to trust the machine. 

Research Areas include real-world team experiments to learn 
how different humans react to different mixtures or levels of 
physical and cognitive capabilities in machine systems; team 
experiments with different machines behavior to determine which 
makes the machine legible and predictable so that a human can 
easily infer a machine’s intentions and predict machine behavior; 
explainable AI team experiments to determine when and what 
the machine should explain so that the human can maintain a 
valid model of its teammate; team experiments to determine the 
factors needed to build and maintain human trust in the machine.

Machine Capabilities: Artificial Intelligence – research 
to improve intelligent machine capabilities in order 
to enable effective human machine teams. 

Challenges include understanding the additional capabilities 
that a machine needs to be an effective teammate in the relevant 
tasks and environments. The capability areas include perception 
and motor control; communication; modeling the environment 
and itself; reasoning, problem solving, planning, common sense, 
and task expertise; learning; and integrated architectures. 

Research Areas include perception studies such as activity 
recognition that builds on new advanced sensor, machine 
learning algorithms and computing hardware to provide robots 
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with the ability build internal models of their environments 
and predict and evaluate future states; communication studies 
to ground the meaning of a communication to context and 
environment; studies that use computer game engines of 
the world to improve and develop machine models of the 
environment and the machine’s own capabilities; teaming 
studies on perspective taking, joint attention, and cooperation 
and coordination to develop new reasoning, problem solving, 
planning and task expertise; human-robot interaction and 
interactive task learning studies where humans teach AI 
systems new tasks through demonstration and language; 
new or extended integrated architectures that provide 
frameworks for developing and integrating many, if not all 
of the capabilities required for machine teammates. 

Machine Models of Humans – research to understand and 
realize the internal representations and processing of a machine 
required for reasoning about human teammates. A machine’s 
model of itself and a model of the team structure are also 
important, but the focus of workshop discussions was on how 
machines represent and reason about human teammates. 

Challenges include understanding which aspects, and 
to what fidelity, do machines need to model the physical 
capabilities and minds of humans given the demands of 
the tasks; understanding how to construct and dynamically 
model individually and collectively the many components 
that make up the human mind, including perceptual, 
motor, planning, and abilities; and understanding joint 
attention, theory of mind, and perspective taking.

Research Areas include applied social science and human-
robot interaction studies to determine which aspects of 
human-human teaming are necessary to support effective 
and robust human machine teaming. These studies will define 
which aspects of human behavior need to be modeled for 
different teaming situations and establish the range of human 
perception and motor control abilities, as well as human 
reasoning and planning abilities, so that the machine can reason 
about its human teammates. Lastly, studies to enable dynamic 
models that personalize individuals for specific tasks and then 
tracking those individuals through the course of a task. 

The participants noted that there is significant interaction among 
these four topics - progress in one will impact the others, and 
vice versa, and all impact our ability to develop machines that 
establish and maintain trust with human teammates. Success will 
require increased dialogue and collaborations across the fields 
of computer science, robotics, psychology, and neuroscience. 
The participants also advocated for the development of open 
datasets and corpuses to facilitate computational modeling and 
development of intelligent agents. Lastly, they recommended the 
development of specific “use cases,” that is, specific examples 
of where human machine teaming would have a big impact. By 
providing a detailed task analysis, researchers can focus on the 
particular challenges to development of intelligent teammates 
in a particular situation. Building along these lines, research 
competitions and prizes can provide added motivation for teams 

to tackle particular human machine teaming challenges. The 
participants outlined a trajectory for research in the near- and 
far-term for each of these topics areas. In general, the consensus 
was that in the near-term (5-10 years), intelligent machines will 
have simplified forms of the desired capabilities. They will have 
simple natural language communication skills and perform 
simple task planning and reasoning in controlled environmental 
conditions. The participants were optimistic that the flexible and 
adaptive intelligent machines are achievable in the far-term (10- 
20 years). These intelligent machines will intelligently anticipate 
the teammate’s capabilities, intentions, and generalize specific 
learning experiences and enable true human machine teaming.
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Introduction
Human-to-human teaming involves multiple individuals banding 
together in pursuit of a common goal (Salas, Dickinson, 
Converse, & Tannenbaum, 1992; Salas, Cooke, & Rosen, 2008; 
Cooke et al., 2013). Sports teams, music groups, non-profits, 
business units, as well as small-scale military organizations, are 
common examples of situations where multiple individuals 
work together, not in the service of a single individual, but in 
the service of the team. A team can take advantage of the 
skills and the expertise of individuals, sometimes through 
loose coordination where each member works almost 
autonomously, or tightly coupled where low-level actions of 
members are performed in concert with others to achieve goals 
that would be impossible for a single person on their own. At 
their best, teams amplify the unique skills and capabilities of 
their members, relying on members to trust each other and 
sublimate their individual goals for those of the group. 

For most of their history, intelligent machines have been 
tools and not teammates. We have developed increasingly 
sophisticated devices using remote operation, but these 
devices require the undivided attention of a human user. 
Robotic assistants have been developed in domains and 
applications ranging from human personal assistants to search 
and rescue operations (Heard et al., 2019; Gombolay et al., 
2017; Lasota et al., 2017; Barlett & Cooke, 2015). We are coming 
to increasingly rely on powerful tools such as self-driving cars, 
chatbots that provide technical support, and virtual assistants 
like Siri and Alexa. At best, these technologies are useful in 
that they extend human capabilities, but their communicative 
and cognitive capabilities have been inadequate for being a 
useful and trusted teammate. For instance, consider this real 
exchange between a human and the virtual assistant Siri:

 User: “Play a good song”

 Siri: “Sorry, I couldn’t find ‘A Good Song’ in your music.”

This exchange helps to illustrate why, despite considerable 
technological advances, there are many challenges before 
we can fully trust machines to autonomously handle high-risk, 
complex operations (e.g., driving in contexts with unpredictable 
pedestrian behavior) or function as an autonomous teammate 
in critical situations (e.g., a member of a military unit). Although 
there are challenges, there continue to be examples of intelligent 
machines successfully teaming with humans, although in limited 
contexts. In military training, autonomous AI systems (virtual 
agents) have been used to not only populate the battlespace 
with friendly and enemy units (Jones et al, 1999; Hill et al. 1998), 
but also as simulated co-pilots (Cooke et al., 2013), members of 
nautical maintenance staff (Rickel & Johnson, 2003), and as virtual 
humans (Traum et al., 2003). Most of these teaming situations 
have involved interactions with a human during execution 
of a constrained task through restricted natural language.

In this Future Directions workshop, participants discussed how 
we might transition from using machines as human-controlled 
tools for accomplishing specific tasks to intelligent machines 
and virtual agents that cooperate and partner with humans 
across a variety of domains. In this framework, the machine 
is flexible and adaptive to the states of the human teammate 
and the environment, intelligently anticipating the teammate’s 
capabilities, intentions, and generalizing specific learning 
experiences to entirely new situations. There is considerable 
potential to be gained in developing intelligent machines that 
can function in a team with humans. Machines can possess 
sensory (infra-red, FLIR, sonar, etc.) and motor (flying, fast 
land travel, precision surgery, etc.) capabilities that humans 
do not possess. They also can perform tasks over and over 
again, without becoming bored or fatigued, maintaining a 
level of vigilance that would be difficult for a human. In some 
cases, they can communicate and access resources (such as 
data on the web) faster and more precisely than a human, 
and they can possess computational capabilities (such as 
complex mathematical calculations) that are beyond those 
of humans and data analysis. A machine can also be used in 
dangerous or extreme environments without risk of loss of life. 
Development of autonomous machines that use such capabilities 
to collaborate with human partners can have a transformative 
effect across many commercial and military applications. 

To illustrate both the possibilities and the challenges in 
achieving the goal of true human machine teaming, consider an 
example from the comic book and film “Iron Man." The human 
protagonist, Tony Stark, has an AI assistant named J.A.R.V.I.S. 
(“Just A Rather Very Intelligent System”) who provides real-time 
information, completes tasks, operates other machines, and 
even provides emotional support based on Tony’s needs at any 
given time. Here is one vignette from the film (Arad et al., 2008):

 Tony: “Jarvis, you up?”

 J.A.R.V.I.S.: “For you, sir, always.”

 Tony:  “I'd like to open a new project 
file, index as Mark Two. “

 J.A.R.V.I.S.:  “Shall I store this on the Stark 
Industries Central Database?”

 Tony:  “Actually, I don't know who to trust right 
now. Till further notice, why don't we just 
keep everything on my private server?”

 J.A.R.V.I.S.: “Working on a secret project, are we, sir?

 Tony:  “I don't want this winding up 
in the wrong hands.”
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From this snippet of dialogue, we can appreciate that J.A.R.V.I.S. 
has extraordinary cognitive capabilities. When asked to open 
a new project file, J.A.R.V.I.S. immediately anticipates that 
Tony might—or might not—want to store it in the central 
database. When asked “why don’t we just keep everything 
on my private server?” J.A.R.V.I.S. does not recognize it as 
a question, but rather as an implicit command. J.A.R.V.I.S.’ 
response reflects his understanding that Tony probably 
intends to keep this new project confidential until further 
notice. Perhaps what is most noteworthy about this example, 
however, is that Tony’s interactions with J.A.R.V.I.S. reflect a 
remarkable level of comfort and trust. Tony fundamentally 
believes that J.A.R.V.I.S. can understand his underlying 
intentions, and that he can be trusted to intelligently 
collaborate with him towards achieving their shared goals.

Over the last 20 years, research in psychology and neuroscience 
and technological advances in artificial intelligence and 
robotics have led to insights into the underlying capabilities 
needed to support this level of autonomy and teaming. 
The goal of this workshop was to bring researchers from 
these communities together to discuss the promise, 
possibilities, and challenges for the development of intelligent 
machines that can team with humans to cooperatively 
solve complex problems in dynamic environments.

Future Human Machine Team Scenarios 
The workshop participants worked in small groups to 
discuss the future of human machine teaming in the 
context of concrete scenarios of human machine teams of 
the future. Three potential scenarios were envisioned: 

1. Intelligent Assistant Teams
Three small groups discussed related visions of human machine
teaming based on an intelligent assistant that autonomously
guides human decision-making and learning. 1) An “intel”
assistant that is proactive, understanding context and asking
questions to fill in gaps of knowledge, and adaptive to the
user needs (provides relevant information when the user
needs it). 2) A “cyber-security” assistant that monitors security
threats, “knows” what information is accurate and relevant,
and dynamically suggests solutions. 3) A “cooperative
learning” assistant that bootstraps knowledge to improve
not only the students’ learning but also its own learning.

2. Naval Maintenance Teams
One group discussed future human machine teaming in
the context of performing routine naval maintenance tasks.
Handed a Maintenance Requirement Card (MRC), the team
will determine a division of labor and work cooperatively on
their common goal. The intelligent system will understand
and predict its human collaborator’s actions and perform both
general and skilled object manipulations, as needed. It will
have rich reasoning capabilities of time, space, causality, and
identity so that it can adaptively respond to the environment.
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3. Disaster Search, Rescue, and Recovery Teams
One group discussed the potential for human machine teams 
to work cooperatively in disaster search, rescue, and recovery 
operations. They envision multiple levels of autonomous systems 
working cooperatively with humans to search for survivors 
(autonomous air vehicles), move rubble (autonomous movers), 
and administer medical treatment (robotic medics), see Figure 
1. The intelligent systems of these teams will have improved 
physical, cognitive, and social capabilities that can dynamically 
adapt to changes in environment and acquire knowledge 
through experience and interactions with human teammates. 

Figure 1. Human machine teaming scenario for disaster search, rescue, and recovery operations. Autonomous robotic systems work collaboratively 
with humans to search for survivors (high altitude, fixed wing drone, top; hover drone, right; land scout, left), and transport wounded (walking robot 
carrying injured, center-right; bed transport, center-left).
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Framework for Human Machine Teaming
The key themes from the envisioned human team scenarios can be distilled into the framework illustrated in 
Figure 2. See Wynne & Lyons (2018) for a more general discussion of teammate concept structure.

A group of humans and machines (here shown as a single 
human machine pair) collaborate on a common task, such as 
preparing a meal. The members of the team use communication 
to agree on the task for the team (what meal to prepare), to 
divide the task into subtasks (who cooks which dish), and to 
coordinate joint activities (emptying a large pot into a serving 
dish). Communication is also used to inform teammates of 
individual intentions, such as when a teammate will need a 
specific utensil or pot. The creation of a joint understanding 
of the situation is called establishing “common ground.”

Each team member maintains a representation of their own 
beliefs, desires, and intentions (labeled “self” in the diagram), 
but also uses communication and perception to maintain 
a representation of the team’s goals and plans (“team”), as 
well as models of teammates (“teammate”), highlighted in 
red for both the human and the machine. Having a model 
of another individual's physical and mental capabilities, or 
“theory of mind” (Premack & Woodruff, 1978), is evident even 
in young children, and it is central to human communication 
and interactions (Baron-Cohen, 1995). Being able to model a 
teammate can dramatically reduce communication, allowing one 
member to predict the actions of the other, even when those 
actions are outside those of the team goals, such as when one 
member must temporarily answer the phone or feed the dog.

Teammates have many responsibilities, which can make human 
machine teaming challenging. A member needs to inform 
other members if that member is unable to complete a task, 
or even if it finishes a task early so that it is available to help 
out in new ways. They also must track other teammates, so 
they know when they are expected to help them, possibly even 
without direct communication. In general, a teammate must be 
predictable, so other teammates can synchronize their behavior 
appropriately, with all of these activities having an underlying 
need to establish and maintain trust throughout the team.

With this framework in mind, the following sections describe the 
research challenges and opportunities for this vision of human 
machine teaming to be achieved over the next 20 years.

Joint Perception

Communication

Joint Actions

Human Models Machine Models

Teammate

Beliefs
Desires
Intentions
Capabilities

Self

Beliefs
Desires
Intentions
Capabilities

Team

Desires
Intentions

Teammate

Beliefs
Desires
Intentions
Capabilities

Self

Beliefs
Desires
Intentions
Capabilities

Team

Desires
Intentions

Figure 2. A model-based framework for human machine teaming. Each teammate creates model representations of self, teammate, and the team 
that guide perception, communication, and joint action The teammate representation (red outline) is critical to successful teaming.
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Research Challenges in Human Machine Teaming 
Teams can work toward specific, clearly defined goals, or 
toward goals that are broad and complex. Given the vast scope 
of applications for human machine teams, discussions at the 
workshop centered on identifying topic areas and research 
questions that could cut across many applications of human 
machine teaming. Underlying these discussions was a need to 
better understand human intelligence and to make additional 
advances in artificial intelligence. What makes effective teamwork 
especially challenging is that it requires the integration of several 
components (Groom and Nass, 2007) including joint attention 
and common ground, motivation toward team versus individual 
objects, action toward team objects, and trust among team 
members. This section describes four key research challenges 
for human machine teaming identified by participants: 

Human Capabilities: Natural Intelligence – research 
to better understand human cognitive capabilities in 
the context of complex and dynamic situations.

Human Models of Machines – research to understand 
what humans must know and learn about machines 
and their internal structure in order to effectively 
interact with them, including what is required in human 
machine teaming to establish and maintain trust. 

Machine Capabilities: Artificial Intelligence – research 
to improve intelligent machine capabilities in order 
to enable effective human machine teams. 

Machine Models of Humans – research to establish the 
internal representations and processing of a machine for 
reasoning about human teammates. A machine’s model of 
itself and a model of the team structure are also important, 
but the focus of workshop discussions was on how machines 
represent and reason about human teammates. 

Although we present these challenges individually, there 
are significant interactions among them. Progress in one will 
impact the others, or vice versa. Lack of progress in one area 
can inhibit progress in the others. This positive feedback loop 
is shown in Figure 3. Advances in our understanding of natural 
intelligence leads to better models of human capabilities. 
Together with advances in AI, better machine models of 
humans can improve the ability of machines to reason about 
human teammates. The improved behavior of machines 
leads to better teaming experiments, where we can learn 
more about how humans interact with intelligent machines, 
which then leads to improved human models of machines. 
All of these also impact our ability to develop machines 
that establish and maintain trust with human teammates. 

Natural Intelligence Research Artificial Intelligence Research

Human Model
of Machine

Machine Model
of Human

Human
Capabilities

Machine
Capabilities

Teaming Experiments

Figure 3. Positive feedback loops drive progress in all aspects of human machine teaming research. Advances in our understanding of human 
capabilities guide advances in machine capabilities, which leads to better teaming experiments. Results from teaming experiments improve human 
models of machines and machine models of humans, and the cycle continues.
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“Human Capabilities: Natural Intelligence” Challenge
There was a general consensus among workshop participants 
that we lack an adequate understanding of human high-
level cognition, motivation, and social behavior, and that 
understanding human cognition is critical to the other 
challenges. Humans excel at learning and problem solving 
in ways that differ from even sophisticated machines, but as 
discussants pointed out, beyond coarse descriptors (e.g., 
“common sense”), the nature of human intelligence remains 
elusive. Of course, substantial research efforts in cognitive 
science have been directed at understanding how humans 
think, learn, and act, but most of this research has been 
conducted in highly controlled laboratory environments and 
narrow task domains. In natural environments, the sequence 
of actions that lead to a goal is not explicitly instructed, and 
often people must rely on past experiences to make novel 
inferences and predictions. Basic research on the human 
brain computations that support perception, cognition, and 
goal-directed actions in complex situations and extended 
timescales is lacking. In other words, we do not know enough 
about human cognition in the kinds of complex and dynamic 
situations that can benefit the most from human machine teams. 

Workshop participants identified several aspects of human 
intelligence that are generally appreciated but poorly 
understood. The ability to create mental representations 
of situations (“mental models”), the goals and intentions 
of other people (“theory of mind”), and shared knowledge 
with a communication partner (“common ground”) were key 
themes. Robust learning is another key human capability 
that is central to human machine teams. Humans can learn 
information from single events (“episodic memory”) to make 
predictions and generalizations in new situations, and to 
build knowledge about situations and events that can guide 
reasoning and deductive inferences (“common sense”). 

Another topic critical for human machine teams is the nature of 
goal-oriented behavior. Researchers highlighted the ability to 
represent goals and tasks at multiple levels of abstraction (e.g., 
“satisfy hunger” vs. “cook dinner” vs. “make soup”), such that 
past experiences can be leveraged to rapidly learn new tasks 
or to flexibly modify approaches to an existing task. Humans 
might expect teammates to display all of these capabilities, 
but these capabilities are challenging for machine design. 
Significant improvements might be possible by developing 
computational architectures in tandem with novel behavioral 
and neuroscience research paradigms that investigate cognition 
in complex, naturalistic environments at extended timescales.

“Human Models of Machines” Challenge
Beyond improving our overall understanding of human cognition, 
within the context of human machine teaming, we need a 
much better understanding of how humans represent, reason 
about, and reason with machine teammates. Machines often 
have very different physical embodiments and capabilities 
from humans that impact the roles they can play in a team. 
On the cognitive side, humans often approach machines 

with an understanding of their own desires, intentions, and 
capabilities, and they routinely ascribe complex human-like 
intentions and beliefs to machines even with minimal stimuli 
such as moving shapes on a screen (Heider & Simmel, 1944). 
This can lead to overconfidence in a machine’s cognitive 
capabilities, which, in turn, can lead to frustration and ultimately 
failure in human machine teams. We also want to understand 
the impact of having a machine teammate on the human. 
Although a teammate can help, it can also add an extra 
workload burden to a human if the human must continually 
attend to it, checking its behavior, etc. These are fundamentally 
questions of psychology and neuroscience but require 
research in intelligence machines in order to address them.

There are many open questions as to how complete a model 
of a machine’s internal state a human requires for effective 
teaming. Is it sufficient to have an abstract characterization 
of the machine’s goals and intentions, or are more detailed 
characterization required? What aspects of the machine’s 
internal state and intentions can the human infer from the 
machine’s actions? From the machine design perspective, we 
will also want to understand how to make machines easier 
to understand and work with. For those, one open question 
is whether it is important to create machines that “think like 
humans?” One theory is that if machines reason and behave 
like humans, humans can use all of their capabilities for tracking 
and predicting other humans in teaming with robots. A counter 
argument is that for many tasks, models that are simpler 
than full scale human reasoning may be easy to process.

Beyond tracking behavior and reasoning, there is explanation 
of behavior. Already we have seen the challenge of the opacity 
of some machine learning techniques where it is difficult 
for a human to understand why a machine makes a specific 
decision. A continuing challenge will be to create systems 
that are both competent and can explain their behavior.

These issues in turn lead to questions about how to 
train humans so that they have an accurate model of the 
capabilities of the machines they work with, including 
a machine’s strengths and weaknesses, and especially 
their unusual behaviors and failure modes. 

One point that came up throughout the workshop is that a human 
must be able to trust a machine teammate. We still have limited 
understanding of how machines must be designed to earn and 
maintain that trust. This is especially important in dynamic and 
complex settings, and open world applications, where it is a 
certainty that the model will fail at some point to produce an 
action that the human thought was appropriate, or it produces 
an action that the human perceives to be unhelpful. Indeed, 
the history of human machine teaming is rife with examples 
where people abandoned costly engineered tools because 
the tool was unable to establish or maintain trust of the user. 

“Machine Capabilities: Artificial Intelligence” Challenge
Figure 2 identified in broad strokes some of the representational 
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capabilities required of a machine teammate. The artificial 
intelligence challenge is to determine the details of all of the 
capabilities required in an effective machine teammate. 

One complexity in this challenge is that the cognitive needs 
for a machine teammate differ across tasks and teaming 
arrangements. We see examples of this in existing human 
teaming arrangements where humans effectively team with other 
humans, but also with animals such as dogs, horses, etc. We 
don’t need a complete human-level machine teammate for all 
(and probably most) tasks. In many cases, a machine will have 
very different embodiments than humans - different sensors 
and motor systems, and different computational capabilities. 
One of our challenges is developing a science of teaming 
where we gain an understanding of the additional capabilities 
that a machine needs to be an effective teammate in the 
relevant tasks and environments. These capabilities include:

Perception and Motor Control. To support joint activities, the 
machine must have perceptual and motor capabilities sufficient 
to create an internal model of the environment and act on it. 
In addition, the machine needs to be able to interpret and 
understand a human’s actions (Sukthankar et al., 2014) as they 
relate to team joint activities, inferring teammate goals and 
intentions in real time. Often these actions are subtle, such as 
a change in gaze, facial expression, or intonation, making them 
difficult for a machine to detect and understand. Moreover, 
the machine sensing of the environment and teammates 
is often noisy and incomplete, making it challenging to 
interpret actions and infer intentions from perception alone.

Communication. An obvious enabler of effective teaming is 
communication. Communication includes not only language, 
but gestures, and even interpretation of emotion expression. 
Even with the rise of personal assistants, and the seeming 

ubiquity of AI systems that process language, supporting 
general language understanding and production is still beyond 
the state of the art. Progress is being made in restricted 
environments (McNeese et al., 2018), but this will continue 
to be an open area of research for the foreseeable future. 
Gesture and emotion expression are active areas of research. 

Modeling the Environment and Itself. Beyond perception 
and communication, for complex tasks, the machine must be 
able to model the dynamics of the environment and its own 
capabilities, so that it can predict and evaluate possible futures. 

Reasoning, Problem Solving, Planning, Common Sense, Task 
Expertise. A machine teammate must also have the requisite 
cognitive capabilities to perform its tasks, and coordinate with 
the teammates, etc. Although general human-level capabilities 
in this area are still years away, the discussions in the meeting 
often centered on existing human capabilities in this area, and 
how incorporating them in machines is a critical challenge. 
For example, natural communication between two individuals 
relies on the ability to generate mental models about situations 
(van Dijk and Kintsch, 1983; Richmond & Zacks) and integrate 
assumptions about the communication partner’s goals and 
knowledge (“common ground,” cf. Clark, 1992; Brown-Schmidt 
& Duff, 2016). Humans generate mental models by drawing on 
knowledge about particular situations (Hard Tversky, & Lang, 
2006) and memories of specific events (Schacter, Addis, & 
Buckner, 2008). Humans are also capable of representing goals 
and sequences of actions that lead to a goal in a hierarchical 
and abstract manner (Botvinick, 2008), such that they can use 
knowledge about previous tasks to rapidly learn related tasks 
(e.g., knowing how to make a cake can facilitate learning 
how to make cookies). Furthermore, there are additional 
capabilities that are needed to support teaming, such as 
perspective taking and maintaining joint attention. A machine 

"One of our challenges is developing a science 
of teaming where we gain an understanding 
of the additional capabilities that a machine 

needs to be an effective teammate in the 
relevant tasks and environments."
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that exhibits some of these capabilities could more effectively 
communicate and collaborate with human teammates and fulfill 
its role on the team without extensive human supervision.

Learning. Although much of a machine teammate’s 
knowledge can be defined offline, a machine teammate 
may need to dynamically learn from its environment, both 
to improve its task performance, but also to improve 
its model of its human teammates to better anticipate 
their goals, beliefs, actions, and interactions. 

Integrated Architectures. Beyond individual components, 
an ongoing research challenge is how these components 
work together to create coherent, effective behavior for 
complex problems that involve many different types of 
reasoning and problem solving. Many approaches to AI 
provide solutions to specific types of problems, where in 
many teaming situations, the machine must use a variety of 
approaches to solve many different types of problems. 

“Machine Models of Humans” Challenge
One specific aspect of machine capabilities that elicited 
much discussion was machine modeling and reasoning about 
human teammates. As shown in Figure 2, a machine needs 
some kind of “mental model” of human partners, in terms of 
their physical and mental capabilities (e.g., memory, attention, 
and reasoning) and their goals and motivations. Although 
understanding human physical capabilities is important, the 
emphasis in the discussions was on mental capabilities. 

The first challenge is understanding which aspects, and to 
what fidelity, do machines need to model the minds of humans 
given the demands of the tasks. One can imagine that in 
some situations, the model might be implicit—baked into the 
machine’s design based on the designer’s assumptions about 
the human teammate’s goals, intentions, and capabilities. In 
other cases, the machine may require an explicit model of only 
the human’s goals, while in others, the machine would be most 
effective if it could predict the human’s motor actions with sub-
second accuracy. As illustrated in the J.A.R.V.I.S. example, natural 
interactions and communication might even require a machine 
to generate a relatively rich model of the human based on the 
context and situation. Furthermore, the machine design might 
be improved by modeling the limitations of human cognition 
and brain function. For instance, machines could tailor delivery 
of information and decision options based on inferences about 
a human teammate’s attentional capacity and emotional state.

There are additional challenges as to how to construct (Hayes 
and Scassellati, 2016) and dynamically model individually and 
collectively the many components that make up the human mind, 
including perceptual, motor, planning, and abilities. Teamwork adds 
extra components, such as understanding joint attention, theory 
of mind, and perspective taking. Although these are active areas 
in AI for building machine intelligence, the vast majority of work 
on modeling human abilities comes from the cognitive sciences: 
cognitive psychology, cognitive neuroscience, linguistics, etc.
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Figure 4 Rational Speech Act (RSA)-style reasoning applied the signaling game. The three faces along the bottom show the signaling game context. 
Agents are depicted as reasoning recursively about one another's beliefs: listener L reasons about an internal representation of a speaker S, who in 
turn is modeled as reasoning about a simplified literal listener. Lit. Boxes around targets in the reference game denote interpretations available to a 
particular agent. [Credit: Goodman and Frank, 2016]

Research Opportunities in Human Machine Teaming 
Research in AI and robotics, psychology, and neuroscience, 
have laid the foundation for future advances in human machine 
teaming. Below are promising research opportunities that 
can address the four research challenges described above. 

“Human Capabilities: Natural Intelligence” Research
Advances in the understanding of human capabilities are 
necessary to understand how humans might optimally interact 
with machines and to inform design of flexible, intelligent 
systems for human machine teaming. Below is a description of 
research areas that show promise in advancing our understanding 
of the cognitive and neural foundations for human intelligence. 

Communication. Research in artificial intelligence has made 
progress on automated speech recognition, comprehension, 
and generation. Recent computational models have focused 
on interpretation of subtle aspects of language such as indirect, 
non-literal, and pedagogical speech (Goodman & Frank, 2016). 

These models assume that the speaker is optimizing speech to 
account for the listener’s beliefs and desires, and the listener, 
in turn, uses this principle to guide speech comprehension, 
see Figure 4. Nonetheless, unrestricted natural language 
comprehension continues to be beyond current AI capabilities. 
Human language comprehension relies on context, prior 
knowledge about events and situations (Van Dijk & Kintsch, 1983), 
memories of specific events (Duff & Brown-Schmidt, 2012), beliefs 
about the speaker's identity (Eckert, 2012), and principles that 
communicators are expected to follow (Grice, 1975; Goodman 
& Frank, 2016). Experimental research on pragmatic language 
understanding has mostly been restricted to very simple 
laboratory experiments, and in the near term, psychologists 
and neuroscientists need to develop experimental paradigms 
to understand natural language in real-world situations. In the 
long-term, it will be necessary to translate empirical findings from 
these studies into scaled up computational implementations 
that can cope with real-world complexity and uncertainty. 



    12

Robust Unsupervised Learning. Humans have the capability 
to learn from single instances, generalize where appropriate, 
and show transfer of knowledge to new situations—capabilities 
that have proven to be a challenge for current AI approaches. 
Recent work suggests that, as an alternative to supervised 
reinforcement learning or Hebbian learning, unsupervised 
learning may be accelerated by using biologically-inspired 
predictive learning (O’Reilly et al., 2014), along with constraints 
that humans typically use to regularize learning. Another 
promising approach may be to flexibly control learning through 
attentional mechanisms that determine when and how much 
to learn, as in Neural Turing Machines (Graves et al., 2014). 

Another approach to improving learning is to adopt multiple, 
complementary representations that interact with one another 
(O’Reilly et al., 2014). Humans can learn and remember 
specific experiences (episodic memory), but they also can 
build cognitive maps and schemas that capture knowledge 
about the structure of events and the environment (Bellmund 
et al., 2018; Ekstrom & Ranganath, 2018; Stachenfeld et 
al., 2017). Research in this area will be especially important 
to addressing the challenge of lifelong learning—that is, 
continuous acquisition of knowledge over extended timescales. 
If the human brain has a generic representational format for 
many different kinds of knowledge, then computer scientists 
may be able to develop similar systems in artificial agents. 

Understanding how these mental representations are learned 
will allow us to build more human-like artificial memory systems, 
and also improve the ability of machines to reason about the 
memory abilities and limitations of human partners. Studies 
in animal models indicate that representations of specific 

experiences may be reactivated during sleep or rest, such 
that the brain can discover new knowledge by integrating 
across events (Lewis, Knoblich, & Poe, 2018). Brain-inspired 
architectures that leverage similar replay mechanisms show 
promise in improving the efficacy of reinforcement learning 
(Gershman & Daw, 2017; Botvinick et al., 2019) and the ability 
to learn new tasks without showing catastrophic forgetting 
of old tasks (Parisi et al., 2018). In the coming years, it will be 
important to know when and how neural replay occurs, and how 
the brain determines the memories that will be reactivated. 
This knowledge will be critical for understanding which aspects 
of replay are optimal for improving machine intelligence.

Active Learning and Curiosity. Research in AI is approaching the 
question of whether flexible problem solving can be improved by 
reinforcing acquisition of information in the face of uncertainty 
(Hutson, 2017). In humans, the intrinsic motivation to acquire 
knowledge is called curiosity, and curiosity has been shown to 
enhance learning and retention in humans (Kang et al., 2009; 
Gruber et al., 2014; Gruber & Ranganath, 2019; Stare et al., 
2018) and machines (Hester & Stone, 2017). Recent research in 
cognitive neuroscience and psychology has begun to address 
this topic, but much remains to be learned about the factors that 
elicit curiosity and exploration, and the ways in which curiosity 
can affect learning (Gruber & Ranganath, 2019) and decision 
making (Bennett et al., 2016 ;Gershman, 2019). Incorporating 
curiosity can enhance the efficiency of learning in AI systems, by 
focusing exploration at points of high prediction error (Ecoffet 
et al., 2019). Studies of curiosity and exploration in infants have 
led to the development of robots that autonomously generate 
their own learning curricula, as shown in Figure 5 (Oudeyer and 
Smith, 2016). Going forward, it will be particularly important to 

research the factors that drive active 
information seeking and exploration 
in humans and, in the long term, to 
build machines that know how to 
actively generate questions in order 
to fill knowledge gaps about the 
external world and about the internal 
mental states of their partners.

14 Pierre-Yves Oudeyer

Figure 2. The Playground Experiment [Oudeyer and Kaplan, 2006, Oudeyer et al., 2007] (A) The

learning context; (B) The computational architecture for curiosity-driven exploration: 1) the robot

learner probabilistically selects actions and contexts according to their potential to provide infor-

mation that improves the world model (i.e. reduces prediction errors); 2) an unsupervised learning

algorithms progressively differentiates actions and contexts to be selected; (C) Illustration of a

self-organized developmental sequence where the robot automatically identifies, categorizes and

shifts from simple to mode complex learning experiences. Figure adapted with permission from

[Gottlieb et al., 2013].

learning situation (curve 2). Thus, embodied exploration driven by learning progress creates an

organized exploratory strategy, i.e. a developmental trajecotory: the system systematically achieves

these learning experiences in an order and does so because they yield (given the propensities of the

learner and the physical world) different patterns of uncertainty reduction.

In the Playground experiment, multiple experimental runs lead to two general categories of

results: self-organization and a mixture of regularities and diversities in the developmental patterns

Figure 5. Curiosity-driven learning and intrinsically-driven exploration experiments with developmental robots. [Credit: Oudeyer and Smith, 2016]
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Task Learning and Generalization: What allows humans to 
quickly learn tasks and generalize this learning to other tasks? 
One possibility is that humans “learn to learn” by acquiring 
knowledge at multiple levels of abstraction (Tenenbaum et 
al., 2011; Lake et al., 2017), and variations on this idea have 
begun to reap benefits in machine learning (Botvinick et al., 
2019). Other work is investigating how learning of extended 
sequences of actions are represented in a manner that can 
support rapid learning of new tasks that involve overlapping 
actions (Desrochers et al., 2016 Frontiers Syst Neuro, 
Yang et al., 2019). Neuroscience research can guide future 
development in this area by characterizing how tasks can 
be represented in a manner that is compositional, such that 
information can be reused and recombined across tasks. 

Task Control and Multi-Threading. Humans often must manage 
multiple goals at once and at different levels of abstraction, but 
we often fail at multitasking (Salvucci and Taatgen, 2008). The 
potential for human machine teaming could be strengthened 
if machines can aid humans in multitasking situations. Yet 
without an understanding of the constraints on the human 
operator and the nature of task representations that impact 
multitasking, it would be difficult to take advantage of this 
teaming relationship. Current work suggests that the specific way 
in which a task is represented can constrain how we multitask 
(Fusi et al., 2016; Musslick et al., 2016). Representing tasks in 
a simplified, abstract manner might improve generalization 
and novel task performance, but such representations 
are vulnerable to interference. In contrast, detailed, high 
dimensional representations have low interference but are 
difficult to generalize. This dichotomy might 
be solved by the adoption of multiple task 
representations by different brain networks. 
A near-term goal for research in this field will 
be to gain data on neural task representations 
and to develop models to understand who 
the strengths and weaknesses of these 
representations in multitasking situations.

Integrated Cognition in Complex, Dynamic 
Environments. Most of the research discussed 
above has been conducted in highly controlled 
laboratory environments using well-defined, 
temporally-delimited tasks. These laboratory 
paradigms do not necessarily capture behavior 
in environments where uncertainty is high, or 
in tasks that require multiple steps towards a 
high-level goal. Recent cognitive models have 
been directed towards real-world applications, 
such as consumer online choice behavior 
(Schulz et al., 2019), and comprehension of 
large-scale natural image concepts (Griffiths 
et al., 2016). Nonetheless, these models 
tend to focus on specific cognitive domains 
(e.g., memory, attention, language, decision 
making, etc.) in isolation, and there remains 
a large gap between these applications and 

the kinds of problems that require human machine teaming. 
It will be important to develop controlled, theory-driven 
research paradigms to understand temporally-extended task 
performance in naturalistic environments (Reggente et al., 
2018). These data can be used to develop integrated cognitive 
and brain-inspired models in which different processes 
interact in a manner that can emulate human performance.

Decoding Neural Signals for Human Machine Interactions. 
Models and algorithms to decode neural signals show a high 
degree of promise for application in human machine teaming 
situations (Millan, 2019). Investigations of neural activity related 
to naturalistic perception, action, and cognition, along with 
analyses with computational models and machine learning tools 
can be used to develop interfaces and sensors for interactions 
with machines. For instance, Figure 6 illustrates how sensors 
can be used by machines to integrate neural activity patterns 
and behavioral observations, in order to infer the human’s 
intentions and cognitive states (e.g., Chavarriaga et al., 2018). 
Although current approaches rely on data-driven decoding 
of neural signals, the robustness of brain machine interfaces 
could be improved by theory-driven models that incorporate an 
understanding of the neural representations that support high-
level cognition (e.g., semantics, memory, cognitive control, etc.).

Figure 6. Brain-Machine Interface (BMI) for enhanced interaction: symbiotic car driving. The 
controller of the intelligent car takes into account environmental information, driver’s actions 
and physiological signals, as well as their cognitive states inferred by the BMI from EEG (red 
arrows) to decide on the type and level of assistance it provides [Credit: Chavarriaga et al., 2018].
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Research Trajectory for “Human Capabilities: Natural Intelligence”
We summarize the research trajectory for these advances 
in human capabilities: natural intelligence as:

Near-term (5-10 years)
• New experimental paradigms to understand 

natural language in real-world situations. 
• Studies to understand human mechanisms for 

regulating learning rates and memory retrieval. 
• Studies to understand the factors that elicit human 

curious states, the effects of curiosity on learning 
rates, and the tradeoffs between information 
seeking and goal-directed learning.

• Studies of neural representations of overlapping 
tasks and generalization to novel tasks.

• Research examining generalizability of models 
based on laboratory findings to investigations of 
perception, action, and cognition across extended 
timescales in dynamic environments.

• Development of minimally invasive sensors to collect 
detailed real-time measures of neural activity.

Long-term (10-20 years)
• Develop natural language models that represent 

real-world complexity and uncertainty. 
• Identify the factors that determine memory replay 

and the content and timing of replay events; 
understand real-time interactions between systems 
that support episodic memory and systems that form 
general knowledge about events and situations.

• Develop computational models that can 
actively seek information through directed 
questioning of human teammates.

• Understand the fundamental mechanisms that allow 
humans to learn from single instances, generalize where 
appropriate, and show transfer to new situations

• Develop computational models of situations where 
multiple goals must be satisfied by sequencing 
and combining task representations.

• Theoretical frameworks (e.g., integrated cognitive 
architectures) to explain how multiple cognitive 
processes interact across extended timescales.

• Development of machine interfaces that use theory-driven 
computational neuroscience models to decode brain activity.

“Human Models of Machines” Research 
Real-world Team Experiments. Advances in psychology and 
neuroscience are enhancing our understanding of human 
reasoning; however, many of the challenges in developing 
human models of machines identified earlier require research 
on the empirical side of human machine teaming research. 
Figure 3 showed a basic cycle of how improvements in 
different areas can facilitate research in others. Central to this 
is having experimental research in real-world, mixed human 
machine teams. Through these experiments we need to learn 
how different humans react to different mixtures or levels 
of cognitive capabilities in machine systems. What is the 
impact of a machine having adaptive models of the human, 

versus a fixed model, or even no model, and how important 
is it that the machine’s reason mimics human reasoning? 

Legible and Predictable Machine Behavior. An active area of 
research is on how to make the machines behavior “legible” 
and predictable so that a human can easily infer a machine’s 
intentions and predict ahead of time what to expect of the 
robot (Dragan et al., 2015). To enhance legibility, a robot 
might exaggerate aspects of a motion in order to make it 
clear what its intentions are. This work has mainly focused on 
manipulation and movement tasks; however, these concepts 
could conceivably be applied to tasks that involve more 
abstract goals and tasks, using many different modalities. 
Research on social robots suggests that humans do respond 
to emotion expressions in machines for simple tasks and 
interactions, but further research is needed for complex tasks. 

Explainable AI. Research on explainable AI has expanded, 
but mostly in areas related to machine learning. Research is 
needed on more dynamic explanations where the machine 
is reasoning about when and what it should explain so that it 
can help the human maintain a valid model of its teammate. 

Trust. Building and maintenance of trust are rich scientific 
questions, requiring study in humans, machines, their models 
of each other, and their interactions, building on the research 
areas described above. What does a human need to know 
about the inner workings of a machine beyond its intentions 
in order to trust it? What is the impact of different machine 
transparency mechanisms and when is more information 
about a machine’s inner working actually detrimental? To what 
degree are our models of others (human models of machines, 
and machine models of humans) shaped by the need to 
establish and maintain trust? How do we address and repair 
potential violations of trust? There is some existing research 
on conditions that establish human-human trust, particularly 
with respect to knowledge acquisition and problem-solving 
(Landrum et al., 2015); and this is an area where sophisticated 
computational models of cognition have been developed, but 
only for highly controlled laboratory tasks. Research is need 
on whether these results apply to complex real-world tasks. 

Research Trajectory for “Human Models of Machines”
We summarize the research trajectory for these 
advances in human models of machines as:

Near-term (5-10 years)
• Design real-world experiments to examine how 

humans react to a variety of human machine teaming 
arrangements and variations in machine capabilities.

• Research how to make machine behavior legible and 
predictable beyond manipulation and motion.

• Develop machines that can dynamically explain their 
behavior for simple human machine teaming tasks.

• Studies in simple human machine teaming domains to 
examine the effect of variations in machine explanation, 
legibility, and related capabilities on human trust.
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Far-term (10-20 years)
• Develop theories and corresponding implementations 

of legible and predictable machine behaviors.
• Design machines that can produce explanations as 

appropriate for the needs of their teammate for both 
simple and complex human machine teaming tasks.

• Develop new theories to describe the impact of 
variations and combinations of explanation, legibility, 
and related capabilities on human trust for both simple 
and complex human machine teaming domains. 

“Machine Capabilities: Artificial Intelligence” Research
Research in AI, and specifically machine learning, has 
exploded in recent years, and as outlined in “The National 
Artificial Intelligence R&D Strategic Plan: 2019 Update” 
(Select Committee on Artificial Intelligence, 2019), it has 
become a national priority. However, we are still far from 
machine teammates that have the capabilities needed to fully 
support joint tasks at the same level as human teams. There 
are many opportunities for future advancements that can 
fill in these gaps across essentially all areas of AI. The key AI 
research areas relevant to human machine teaming include:

Perception. We are seeing continual advances across the 
spectrum of accessible data from multiple sensors, machine 
learning algorithms, and computing hardware that promise 
to provide improvements in robot perception. Research in 
activity recognition that builds on those capabilities promises 
to provide robots with the ability to build internal models of 
their environments and to predict and evaluate future states. 
Furthermore, research is needed on how cognitive processing 
can provide top-down influence to aid in perceptual processing. 

Communication. Some of the necessary next steps in 
communication require “precision semantics”, not just 
getting the gist of the communication, but grounding the 
meaning of a communication to the specific environment, and 
in the specific context (prior interactions) of the utterance. 
This requires progress in ambiguity resolution ("The council 
denied the protesters a permit because "they" feared/
advocated violence); contextual threshold resolution 
("tall", "dangerous" relative to what comparison class?); 
and speech act recognition (request, command, etc.). 

Modeling the Environment and Itself. One somewhat 
unintuitive direction for future research is to build on the 
continual enhancement and growth of detailed computational 
models of the world that are developed for large scale computer 
games. By taking advantage of the underlying game engines 
and the accompanying physics models, machine agents could 
have real-time models that can be used to reason about, and 
even predict the world. This approach has been explored in 
robot architectures and even cognitive science research to 
model human spatial reasoning (Battaglia, et al., 2013). 

Reasoning, Problem Solving, Planning, Task Expertise. 
Significant progress has been made over the last several 
decades to create effective AI systems, and integrating 
them with other components. However, additional research 
is need outside of standard AI research areas to support 
teamwork, such as perspective-taking, joint attention, and 
advancements in computational theories of cooperation 
and coordination (e.g., Kleiman-Weiner et al., 2016).

Learning. Promising research is developing on machines that 
learn and adapt their behavior directly from human instruction, 
including imitation, demonstration, and language. Much 
of this work is currently pursued by researchers in Human-
Robot Interaction, as well as Interactive Task Learning, where 
humans teach AI systems new tasks through demonstration 
and language (Laird et al., 2017a; Gluck & Laird, 2019). 

Integrated Architectures. Integrated cognitive architectures 
have the potential to provide frameworks for developing 
and integrating many, if not all of the capabilities required 
for machine teammates. Over the last thirty years, there has 
been continued development (Kotseruba and Tsotsos, 2018) 
and some of these, such as ACT-R and Soar, have been used 
for both modeling human behavior as well as controlling 
robotic systems (Mininger and Laird, 2018). Thus, they have 
the potential for not only being used for the reasoning of 
the machine, but also the machine models of humans it is 
teaming with. Recently there has been a drive for consensus 
on the overall abstract functional structure of the mind, 
leading to the Common Model of Cognition (Laird et al., 
2017b), which provides an opportunity for integrating research 
across cognitive science, AI, and cognitive neuroscience.

Research Trajectory for “Machine Capabilities:  
Artificial Intelligence” 
We summarize the research trajectory for these advances 
in machine capabilities: artificial intelligence as:

Near-term (5-10 years)
• Research on how cognitive processing can aid perceptual 

processing and enable machines that track humans 
by accurately recognizing movement and navigation 
behavior throughout different types of tasks.

• Communication studies to better understand ambiguity 
resolution, contextual threshold resolution, and speech act 
recognition will lead to machines that carry on extended 
dialogs about tasks, not limited to single interactions.

• Research on human-robot interaction and 
interactive task learning where humans teach AI 
systems new tasks through demonstration and 
language and correct the machine’s behavior.

• Research and development of computational 
models for perspective-taking, joint attention, and 
theories of cooperation and coordination will be 
mapped onto a common model of cognition.
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• New cognitive architectures that integrate knowledge 
from cognitive science, AI, and cognitive neuroscience. 
Machine teammates will use these cognitive architectures 
both for reasoning and learning, but also to model 
their human teammates across multiple tasks.

Far-term (10-20 years)
• Design machines with the ability to build internal models 

of their environments and predict future states.
• Continued research on cognitive and perceptual processing 

to build machines that can communicate with contextual 
understanding of the specific environment and the specific 
context of the utterance. This will lead to machines that can 
dynamically track humans throughout different types of tasks 
that require different types of interactions with the world.

• Design machine agents with real-time models that can be 
used to reason about, and even predict, the world around it.

• Develop the theoretical framework to enable 
machine reasoning, problem solving, planning, task 
expertise needed for human machine teaming. 

• Build machines that can learn and adapt their 
behavior directly from human instruction, including 
imitation, demonstration, and language.

• Develop integrated cognitive architectures that 
create the reasoning of the machine and also provide 
the machine models of human teammates.

“Machine Models of Humans” Research
As illustrated in Figure 2, a critical component of a machine 
teammate is its ability to reason about its human teammates. 
This is a rich area for future research in these five areas:

Understanding Which Aspects of Human Behavior Need 
to be Modeled. Continual progress is being made in human 
modeling and prediction, including reasoning about (and 
predicting) the beliefs, desires, and intentions of other agents. 
Ongoing applied social science and human-robot interaction 
research attempts to determine which aspects of human-human 
teaming are necessary to support effective and robust human 
machine teaming. Research in this area can clarify whether 
we need high-fidelity models of human behavior, or whether 
abstract, approximate models are sufficient for a machine to 
effectively team with a human. The expectation is that there 
might not be a single, one-size fits all approach to modeling, 
and extensive research is needed to fill out our understanding of 
what types of models are needed in different teaming situations. 

Understanding Human Perceptual Abilities. The limited 
abilities of human perception are well understood (see for 
example Frisby & Stone, 2010). Incorporating an understanding of 
these abilities will be important for engineering effective machine 
partners. For example, a machine that is referring to some object 
that is difficult to see or locate for a human partner must take 
this into account and possibly provide additional information.

Understanding Human Motor Control Abilities. Human 
motor control abilities are in many ways much more 
advanced than many robots. Humans are more dexterous, 

stable and often faster. On the other hand, humans may be 
weaker than some robots, and may fatigue more quickly. 
Knowledge of these abilities should be an important 
component of the human models represented by machines.

Understanding Human Reasoning and Planning Abilities. In 
order to effectively team with humans in complex sequential 
decision problems, machines must have some understanding 
of how humans represent and solve such problems. Progress 
has been made on answering this question for well-constrained 
problems in cognitive neuroscience, which has pointed towards 
multiple algorithmic strategies, possibly implemented as 
separate neural systems (Kool, Cushman & Gershman, 2018). 
For example, people seem to use model-based “goal-directed” 
and model-free “habitual” action selection under different 
circumstances. People even understand that other individuals will 
be more goal-directed or habitual under different circumstances 
(Gershman et al., 2016). Models of human sequential decision 
making have been developed with sufficient computational 
formalization that they could in principle be incorporated into 
a machine’s model of a human decision maker. One limiting 
factor is that these models have primarily been studied in 
small-scale laboratory settings, so their generalizability to 
complex problems is still untested. For more complex tasks, 
cognitive modeling based on cognitive architectures such as 
ACT-R have been used, including tasks involving teaming. 

Building Dynamic Models. Even if a machine has an initial, 
somewhat generic model of a human, it must customize it to 
the specific teammate and continually update and revise during 
performance. Research in intelligent tutors has been successful 
in creating personalized models of individuals for specific tasks 
and then tracking those individuals (Leyzberg et al., 2018). 
Research is needed in taking these and other techniques and 
scaling them up to human machine teaming applications. 

Research Trajectory for Machine Models of Humans
We summarize the research trajectory for these 
advances in machine models of humans as:

Short-term (5-10 years)
• Design real-world teaming experiments for specific 

tasks to test which levels and types of human 
behavior, human perception, human motor control, 
and human reasoning and planning abilities are 
needed for effective human machine teaming.

• Research in building personalized models 
of human teammates for specific tasks that 
tracks and updates during the task.

Far-term (10-20 years)
• Develop theories for what levels and types of human 

modeling are needed for effective teaming.
• Develop theory for what levels of human 

perception are needed on teaming tasks. 
• Build dynamic models of human teammates 

that extend across a range of tasks.
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Accelerating Progress in Human Machine Teaming
In addition to discussing specific opportunities and challenges, 
workgroup discussions also touched on more general factors 
that are essential to progress in human machine teaming. One 
key theme to emerge from the workshop is the meta-challenge 
of integrating research approaches from across disciplines like 
AI, cognitive psychology, cognitive neuroscience, robotics, and 
human-robot interaction to solve the big research challenges 
of human machine teaming described above. These different 
disciplines have their own terminology, their own measures 
of progress and success, and invariably live in different 
departments with independent meetings and communities. 
Overcoming these barriers will be important to bring about 
progress in a multidisciplinary research field like human machine 
teaming. A combined approach leveraging basic behavioral 
and neuroscience research, computational architectures and 
brain-inspired computational models, and implementations 
in autonomous machines could yield breakthroughs in both 
basic science and applications of human machine teaming. 

One way forward is to facilitate interdisciplinary communication. 
Workshops and small conferences can be an ideal venue to 
encourage researchers to identify connections with researchers 
in other disciplines. Such workshops can be followed up with 
research investments to support multidisciplinary collaborations 
on human machine teaming research. It might be useful 
to consider seed funding for initiating multidisciplinary 
collaborations, as well as large-scale multi-investigator grants 
to support coordinated efforts to tackle ambitious questions. 

Some workshop discussants also advocated for the development 
of open datasets and corpuses to facilitate computational 
modeling and development of intelligent agents. Open 
datasets are widely used in many areas of computer science and 
engineering, such as computer vision and audio processing. 
Discussants pointed out that the currently available datasets do 
not capture the complexity of real-world situations that pose 
challenges to human machine teams. Additionally, an open 

knowledge database would be useful in equipping intelligent 
agents with the kind of world knowledge that humans expect 
from teammates. For instance, in their “Artificial Intelligence 
Roadmap” (Gill and Selman, 2019), the Computing Community 
Consortium recommended the creation of “An Open Knowledge 
Network (OKN) with large amounts of knowledge about entities, 
concepts, and relationships in the world.” The OKN would be 
similar to proprietary databases created by large corporations 
like Google and Microsoft, enabling artificial systems to acquire 
links between objects, entities, relationships, contexts, and 
situations. Developing an OKN would require considerable data 
mining and basic research, and it would require resources for 
maintenance and updating, as described in the Open Knowledge 
Network Report (Executive Office of the President of the United 
States, Committee on Science and Technology, 2018). This kind 
of database could be of significant value for stimulating new 
basic research (e.g., development of computational models 
of natural intelligence, research on neural representation 
of complex world knowledge, etc.) and for engineering of 
intelligent systems (e.g., improving natural language, context-
sensitive behavior, and “common sense” inferences). 

Finally, human machine teaming might also be facilitated by 
specifying “use cases,” that is, specific examples of where 
human machine teaming would have a big impact. Use cases 
can be helpful because a great deal of research on human 
machine teaming is based on scientific assumptions that 
may be overly broad or out of touch with what is actually 
required in particular situations. Given the very broad range of 
applications for human machine teams, approaches that are 
sufficient for one application may be inappropriate for others. By 
providing a detailed task analysis, researchers can focus on the 
particular challenges to development of intelligent teammates 
in a particular situation. Building along these lines, research 
competitions and prizes can provide added motivation for 
teams to tackle particular human machine teaming challenges.
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Conclusion
This report summarizes a bold vision for the potential of intelligent systems to become teammates that can communicate 
with both human and machine partners, coordinate activities, signal intent to support share goals, and represent 
teammates’ goals and situations. The workshop discussants outlined a framework for the next generation of systems and 
outlined research challenges and opportunities. Although the goals that emerged from the workshop are ambitious, the 
participants were optimistic of the potential for human machine teaming to become reality over the next twenty years.
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interests cluster around the intersection of psychology, neuroscience, and philosophy. His early work focused on the cognitive 
neuroscience of moral judgment and the interplay between emotion and reason in moral dilemmas. More recent work focuses on 
critical features of individual and collective intelligence. His current neuroscientific research examines how the brain combines concepts 
to form thoughts and how thoughts are manipulated in reasoning and imagination. His current behavioral research examines strategies 
for improved social decision-making and the alleviation of intergroup conflict. Other interests include effective altruism and the social 
implications of advancing artificial intelligence. He is the author of Moral Tribes: Emotion, Reason, and the Gap Between Us and Them.

John Laird, Professor
University of Michigan
https://soar.eecs.umich.edu/
laird@umich.edu
John Laird is the John L. Tishman Professor of Engineering at the University of Michigan, where he has been since 1986. He received 
his Ph.D. in Computer Science from Carnegie Mellon University in 1983 working with Allen Newell. From 1984 to 1986, he was a 
member of research staff at Xerox Palo Alto Research Center. He is one of the original developers of the Soar architecture and 
leads its continued evolution. He was a founder of Soar Technology, Inc. and he is a Fellow of AAAI, AAAS, ACM, and the Cognitive 
Science Society. With Paul Rosenbloom, he is the winner of the 2018 Herbert A. Simon Prize for Advances in Cognitive Systems.

Christian Lebiere, Research Faculty
Carnegie Mellon University
http://www.psy.cmu.edu/new_old_backup/people/lebiere.html
cl@cmu.edu
Christian Lebiere is Research Faculty in the Psychology Department at Carnegie Mellon University. Dr. Lebier directs the FMS 
Cognitive Modeling Group. He received his B.S. in Computer Science from the University of Liege (Belgium) and his M.S. and Ph.D. 
from the School of Computer Science at Carnegie Mellon University. During his graduate career, he studied connectionist models 
and was the co-developer of the Cascade-Correlation neural network learning algorithm that was a precursor of deep learning 
algorithms. Since 1991, he has worked on the development of the ACT-R cognitive architecture and was co-author with John 
Anderson of the 1998 book “The Atomic Components of Thought”. The ACT-R cognitive architecture has been used by a large 
international community of researchers in over a thousand publications in the fields of Cognitive Science and Artificial Intelligence. 

Dr. Lebiere is a founding member of the Biologically Inspired Cognitive Architectures Society, the International Conference on 
Cognitive Modeling, and the Journal of Artificial General Intelligence. His research has been supported by NSF, ONR, AFOSR, ARL, 
NASA, DARPA, IARPA, DMSO, and DTRA. His main research interests are cognitive architectures and their applications to psychology, 
artificial intelligence, human-computer interaction, decision-making, intelligent agents, network science, and cognitive robotics.

Brad Love, Professor
University College of London
http://bradlove.org/lab
b.love@ucl.ac.uk
Brad Love is Professor of Cognitive and Decision Sciences at University College London (UCL) and a Turing 
Fellow at the Alan Turing Institute, the UK's national institute for data science and artificial intelligence. Dr. Love is 
interested in topics that cross psychology, neuroscience, and machine learning. He is interested in understanding 
consumer behavior using large datasets, such as loyalty card data, topics on how people explore product 
options and construe product categories, and in relating deep learning networks to brain function. 

Joseph B. Lyons, Senior Research Psychologist
US Air Force Research Laboratory
joseph.lyons.6@us.af.mil
Joseph B. Lyons is the Lead for the Collaborative Interfaces and Teaming Core Research Area within the 711 Human 
Performance Wing at Wright-Patterson AFB, OH. Dr. Lyons received his Ph.D. in Industrial/Organizational Psychology 
from Wright State University in Dayton, OH, in 2005. Some of Dr. Lyons’ research interests include human machine trust, 
interpersonal trust, leadership, and social influence. Dr. Lyons has worked for the Air Force Research Laboratory as a 
civilian researcher since 2005, and between 2011-2013 he served as the Program Officer at the Air Force Office of Scientific 
Research where he created a basic research portfolio to study both interpersonal and human machine trust. Dr. Lyons 
has published in a variety of peer-reviewed journals, and is an Associate Editor for the journal Military Psychology.
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Yuko Munakata, Professor
University of Davis, California
munakata@colorado.edu
Yuko Munakata is Professor in the Department of Psychology and Center for Mind and Brain at the University of California, Davis. 
Her work investigates child development and environmental influences on children’s thinking, using behavioral, neuroimaging, and 
computational approaches. She is an elected fellow of the Association for Psychological Science and the American Psychological 
Association. Her work on child development has been funded by the National Institutes of Health since 1998, and has been published 
in top scientific journals and featured widely in the popular press, including The Atlantic, The Today Show, and Parents Magazine. 

Dr. Munakata co-edited two books on brain and cognitive development, and co-authored two editions of a textbook 
on computational cognitive neuroscience. She served as Associate Editor of Psychological Review, and has received 
numerous awards for her research, teaching, and mentoring. She received her B.A. in Psychology and B.S. in Symbolic 
Systems from Stanford University. After earning her Ph.D. in Psychology from Carnegie Mellon University, she conducted 
postdoctoral research in Brain and Cognitive Sciences at the Massachusetts Institute of Technology. She was a 
professor at the University of Denver and then at the University of Colorado Boulder before moving to Davis.

Aude Oliva, Principal Research Scientist/Executive Director 
MIT
http://cvcl.mit.edu/Aude.htm 
oliva@mit.edu
Aude Oliva is the Executive Director of the MIT–IBM Watson AI Lab and the Executive Director of The MIT Quest for 
Intelligence, an MIT-wide initiative which seeks to discover the foundations of human and machine intelligence and deliver 
transformative new technology for humankind. She is also a Principal Research Scientist at the Computer Science and Artificial 
Intelligence Laboratory. She formerly served as an expert to the National Science Foundation, Directorate of Computer 
and Information Science and Engineering. Her trans-disciplinary work in Computational Perception and Cognition builds 
on the synergy between human and artificial vision, and how it applies to solving high-level recognition problems like 
understanding scenes and events, perceiving space, recognizing objects, modeling attention and memory. She was honored 
with the National Science Foundation CAREER Award, a Guggenheim Fellowship, and the Vannevar Bush Faculty Fellowship. 
She earned a M.S. and Ph.D. in cognitive science from the Institut National Polytechnique de Grenoble, France.

Charan Ranganath, Professor
University of California, Davis
http://dml.ucdavis.edu/
cranganath@ucdavis.edu
Charan Ranganath is the Director of the Memory and Plasticity Program and a Professor, at the Center for 
Neuroscience and Department of Psychology at the University of California at Davis. Dr. Ranganath’s research 
focuses on how the brain encodes information about the context (when and where an event took place) of 
an event, motivational factors that influence the stability of memory, and changes in memories over time. His 
research laboratory also investigates how motivational and emotional factors influence memory. 

Dr. Ranganath was a Section Editor for the journal NeuroImage and an editor for the Journal of Neuroscience. 
He was recognized as a Visiting Professor and Fellow at the University of Cambridge, UK, and a Sage Center 
Distinguished Fellow. Dr. Ranganath’s work has received several awards, including the Samuel Sutton Award for 
Distinguished Scientific Contribution to Human ERPs and Cognition, the Young Investigator Award from the 
Cognitive Neuroscience Society, a Guggenheim fellowship, and the Vannevar Bush Faculty Fellowship.

Randy O'Reilly, Professor
University of California Davis 
https://sociology.ucdavis.edu/people/oreilly
oreilly@ucdavis.edu
Randy O’Reilly is Professor of Psychology, Computer Science, and the Center for Neuroscience at the University of California, 
Davis. He has authored over 70 journal articles and an influential textbook on computational cognitive neuroscience. His work 
focuses on biologically-based computational models of learning mechanisms in different brain areas, including hippocampus, 
prefrontal cortex and basal ganglia, and posterior visual cortex. He has received significant funding from ONR, NIH, NSF, 
IARPA, and DARPA. He is a primary author of the Emergent neural network simulation environment. Dr. O’Reilly completed 
a postdoctoral position at the Massachusetts Institute of Technology, earned his M.S. and Ph.D. degrees in Psychology from 
Carnegie Mellon University and was awarded an A.B. degree with highest honors in Psychology from Harvard University.

mailto:munakata@colorado.edu
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Brian Scassellati, Professor
Yale University
https://scazlab.yale.edu/people/brian-scassellati
scaz@cs.yale.edu
Brian Scassellati is the A. Bartlett Giamatti Professor of Computer Science, Cognitive Science, and Mechanical Engineering at Yale 
University. He works at the intersection of artificial intelligence, robotics, and cognitive modeling, and is best known for his work in 
human-robot interaction. His research focuses on building embodied computational models of human social behavior, especially the 
developmental progression of early social skills. Using computational modeling and socially interactive robots, we evaluate models 
of how infants acquire social skills and assist in the diagnosis and quantification of disorders of social development, such as autism.

Matthias Scheutz, Professor
Tufts University
https://engineering.tufts.edu/people/faculty/matthias-scheutz 
matthias.scheutz@tufts.edu
Matthias Scheutz is Professor in Cognitive and Computer Science in the Department of Computer Science and Bernard M. 
Gordon Senior Faculty Fellow in the School of Engineering at Tufts University. He received degrees in philosophy (M.A., Ph.D.) 
and formal logic (M.S.) from the University of Vienna and in computer engineering (M.S.) from the Vienna University of Technology 
in Austria. He also received a joint Ph.D. in cognitive science and computer science from Indiana University. He has over 300 
peer-reviewed publications in artificial intelligence, natural language processing, cognitive modeling, robotics, and human-
robot interaction. His current research focuses on complex autonomous robots that can be tasked in natural language.

Patrick Shafto, Professor
Rutgers University - Newark
http://shaftolab.com/ 
patrick.shafto@rutgers.edu
Dr. Patrick Shafto is the Henry Rutgers Term Chair in Data Science and Professor of Mathematics and Computer Science at 
Rutgers University - Newark. Research in his lab focuses on theoretical and empirical foundations of cooperation and learning 
in humans and machines. He has received numerous honors and awards including an NSF CAREER award and his research has 
formed the basis for successful data science start-up companies eventually acquired by Salesforce and Tableau. His research 
is supported by multiple NSF directorates (EHR, CISE, SBE), DARPA, DoD, the intelligence community, and the NIH.

Greg Trafton, Cognitive Scientist
NRL
https://www.nrl.navy.mil/itd/aic/IntelligentSystems 
greg.trafton@nrl.navy.mil
Greg Trafton is a cognitive scientist with interests in cognitive robotics, human robot interaction, and predictive models of 
humans. He is head of the The Intelligent Systems Section at the Navy Center For Applied Research in Artificial Intelligence 
(NCARAI) performs state-of-the-art research in cognitive science, cognitive robotics and human-robot interaction, predicting 
and preventing procedural errors, the cognition of complex visualizations, interruptions and resumptions, and spatial 
cognition. Dr. Trafton received his B.S. in computer science with a second major in psychology from Trinity University, San 
Antonio, TX in 1989. He received an M.A. (1991) and Ph.D. (1994) in cognitive science from Princeton University.
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Appendix III – Workshop Agenda and Prospectus

Day 1 – Tuesday, July 16, 2019

Time Title

8:00 – 8:15 Check-in and Continental Breakfast

8:15 - 8:20
Welcome and Introductions and Expectations 
John Laird, U Michigan

8:20 -8:45
Workshop framing talk 
John Laird, U Michigan

8:45 – 9:00 Breakout Instructions and Morning Break

9:00 – 10:45

Working Group I: Challenges and Opportunities in Human Machine Teaming 
What is known about human capabilities (from neurocognitive/social research) in this area? 
What is unknown and would be useful to know? What a re current interaction capabilities in 
AI systems? Where are there obvious strengths and weaknesses? How do their weaknesses 
impact interaction with humans today? What capabilities in AI systems can be taken advantage 
of in human machine interactions? How are humans adapting to current AI systems? How 
much do AI systems need to be like humans to make them easy for us to interact with? 

Group A – Physical Aspects of Interaction

Group B – Cognitive Aspects of Interaction

Group C – Social Aspects of Interaction

10:45 – 11:00
BREAK
Transition to main conference room and leads draft outbriefing summary

11:00 –12:00 Working Group 1: Outbriefing 

12:00 – 1:00 LUNCH (provided for participants)

1:00 – 3:45

Working Group II: Technical Capabilities and Challenges 
What are the promising directions for improving AI systems for human interaction? What 
are the potential capabilities of AI systems beyond what we have in humans (different 
sensing modalities, access to knowledge basis not available to most humans, …)?

 Group A – Physical Aspects of Interaction

Group B – Cognitive Aspects of Interaction

Group C – Social Aspects of Interaction

3:45 – 4:00 
BREAK 
Transition to main room and leads draft outbriefing summary

4:00 – 4:45 Report Out from Breakout II

4:45 – 5:00
Summary of Day 
Charan Ranganath, U California - Davis

5:00 MEETING ADJOURNED FOR THE DAY
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DAY 2—Wednesday, July 17TH, 2019

Time Title

8:00 – 8:15
Check-in and Continental Breakfast

8:15 – 8:30
Welcome and Day 1 Recap 
Sam Gershman, Harvard U

8:30 -9:30
‘White Space’ Discussion I 
Discussion of topics which did not fit into the framework of day 1, but need to be discussed.

9:30 – 10:30
‘White Space’ Discussion II 
Discussion of particularly far-out (or long-term), high-risk, high-impact ideas.

10:30 – 10:45 BREAK

10:45 – 11:45 Discussion of Key Ideas/Components for Report

11:45 – 12:00 Closing Remarks

12:00 DEPARTURE
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Future Directions Workshop: Human Machine Teaming
Basic Research Office, Office of the Secretary of Defense

16–17 July 2019 
Basic Research Innovative Collaboration Center 

4100 N. Fairfax Road, Suite 450 Arlington, VA 22203

Co-Chairs: John Laird (Michigan), Samuel Gershman (Harvard), Charan Ranganath (U.C. Davis)

Interactions with technologically sophisticated AI agents are now commonplace, but we nonetheless routinely encounter difficulties 
because we have only an incomplete understanding of the technology, and the technology has an incomplete understanding of us. 
Over the last ten years, there has explosion in research in Artificial Intelligence and in our understanding of the human mind and brain. 
In this Future Directions Workshop, we will explore different sides of how recent research can inform how humans and intelligent 
machines can work together. How can our knowledge of the human mind inform the development of intelligent machines so that they 
can interact more effectively with humans? How are human-to-machine interactions similar to human-human interactions and how are 
they fundamentally different? How do current AI approaches fare in capturing human capabilities and interactions? What knowledge, 
representations, and methods do humans use in interacting with each other that need to be modeled and possibly duplicated in 
machines, and which can be ignored? What do people need to know about what is happening inside AI systems to support effective 
interaction? What aspects of human-human and human-computer interaction are still a mystery where additional research is needed?

This Future Directions in Human Machine Teaming workshop will gather researchers from the AI and Cognitive Science communities 
to discuss opportunities and challenges for how knowledge about humans and AI systems can inform each other, while also informing 
how humans and AI systems can productively interact. The workshop is designed primarily around small-group breakout sessions 
and whole-group discussions rather than a standard conference format, and aims to shed insight on three overarching questions:

• How might the research impact science and technology capabilities of the future?
• What is the possible trajectory of scientific achievement over the next 10–15 years?
• What are the most fundamental challenges to progress?

The discussions and ensuing distributed report provide valuable long-term guidance to the DoD community, as well as the broader 
federal funding community, federal labs, and other stakeholders. Workshop attendees will emerge with a better ability to identify and 
seize potential opportunities at the intersection between the two fields of study. This workshop is sponsored by the Basic Research 
Office within the Office of Secretary of Defense, along with input and interest from the Services and other DoD components. 
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Agenda
Day One: The majority of the first day will be spent in small-group breakout sessions on fundamental
challenges to progress and technical capabilities. The overarching questions to explore include:

• What is known about human capabilities (from neurocognitive/social research)
in this area? What is unknown and would be useful to know?

• What are current interaction capabilities in AI systems? Where are there obvious strengths and
weaknesses? How do their weaknesses impact interaction with humans today? What capabilities
in AI systems can be taken advantage of in human machine interactions?

• How are humans adapting to current AI systems? How much do AI systems need
to be like humans to make them easy for us to interact with?

• What are the promising directions for improving AI systems for human interaction? What are the potential capabilities of AI systems
beyond what we have in humans (different sensing modalities, access to knowledge basis not available to most humans, …)?

To explore these questions, the participants will be split into three small-groups for breakout 
sessions to examine these questions from three separate perspectives: 

1. Physical aspects of interaction.
How is information transmitted between individuals, including human-human and machine-human? This includes
modalities of production and receiving information across different levels of abstraction including sound, speech,
language, vision, gesture/activity, emotion, brain-machine interfaces, etc. What is common across human-human
and human machine interactions at the physical level, and how are interactions different today or may become
different in the future? How do these commonalities and differences affect human machine interaction?

2. Cognitive aspects of interaction.
What cognitive capabilities are critical to supporting interaction, such as decision making, problem solving, planning,
language, access to world knowledge (common sense), and learning? Which aspects of these capabilities are missing from
current AI systems and how might they inform the development of cognitive capabilities or other aspects (robustness)
of AI systems? How important is it for AI systems to have the same reasoning styles and capabilities as humans?

3. Social aspects of interaction.
What social capabilities do humans have that need to be replicated in AI systems, such as common ground and joint attention,
theory of mind, social awareness? How to keep up one’s side of the interaction, dialog, establishing and maintaining trust, etc.?

Day Two: The second day of the workshop is a half-day consisting of white-space, whole group discussions on topics that
did not fall into the Day 1 framework or were especially ambitious and/or high-risk. Participants will also discuss areas 
that require more growth, as well as the trajectory of this intersectional area over time. At the end of the day, the whole 
group will discuss the overarching themes of the workshop that should be included in the final workshop report.

We don’t want to be myopic: build a machine that solves a technical problem. Even machine 
Not everyone needs to be thinking about how machine understands models
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