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Preface 
Over the past century, science and technOlOgy has brOught remarkable new 
capabilities tO all sectOrs of the economy; from telecommunications, energy, and 
electronics to medicine, transportation and defense. Technologies that were fantasy 
decades ago, such as the internet and mobile devices, now inform the way we live, 
work, and interact with our environment. Key to this technological progress is the 
capacity of the global basic research community to create new knowledge and to 
develop new insights in science, technology, and engineering. Understanding the 
trajectories of this fundamental research, within the context of global challenges, 
empowers stakeholders to identify and seize potential opportunities.

The Future Directions Workshop series, sponsored by the Basic Research 
Office of the Office of the Assistant Secretary of Defense for Research and 
Engineering, seeks to examine emerging research and engineering areas 
that are most likely to transform future technology capabilities. 

These workshops gather distinguished academic and industry researchers from 
the world’s top research institutions to engage in an interactive dialogue about 
the promises and challenges of these emerging basic research areas and how 
they could impact future capabilities. Chaired by leaders in the field, these 
workshops encourage unfettered considerations of the prospects of fundamental 
science areas from the most talented minds in the research community.

Reports from the Future Direction Workshop series capture these discussions and 
therefore play a vital role in the discussion of basic research priorities. In each 
report, participants are challenged to address the following important questions:

• How might the research impact science and technology capabilities of the future?
• What is the possible trajectory of scientific achievement over the next 10–15 years?
• What are the most fundamental challenges to progress?

This report is the product of a workshop held January 11–12, 2016 at 
Duke University in Raleigh-Durham, North Carolina on Compressed 
Sensing and the Integration of Sensing and Processing. It is intended as 
a resource to the S&T community including the broader federal funding 
community, federal laboratories, domestic industrial base, and academia.

Innovation is the key 
to the future, but basic 
research is the key to 
future innovation.
 – Jerome Isaac Friedman,  

Nobel Prize Recipient (1990)
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Executive Summary
as it becOmes pOssible tO access ever larger amOunts 
Of data, it becomes increasingly important to develop 
methods of smart sensing that are able to support 
information-based decisions. A trend common to 
all disciplines and areas is the integration of sensing 
and (task-oriented) processing as one unit. At a 
workshop, held at Duke University on January 11–12, 
2016, thirty distinguished researchers from academia 
and industry gathered to discuss the opportunities 
and challenges of Compressed Sensing research to 
intelligently address the ever increasing data produced 
by modern technology.  This report captures those 
discussions and presents the consensus opinion about 
the state of the field, the challenges to progress and the 
trajectory of research for the next 10 and 15 years.

The workshop participants organized the current and 
future research that are fundamental to progress in 
sensing and data processing, into four areas: signal 
acquisition, data models, algorithms and architecture. 

They framed important challenges for these 
research areas within the context of:

• Integration of sensing and data processing
• Integration of distributed and multimodal sensing
• Improved analog-to-digital conversion

• Data models for both large and small datasets
• Algorithms optimized for efficiency and that 

integrate human-machine interactions
• Performance analytics 
• New architecture principles

In addition to discussing important research 
challenges, the participants discussed the value of 
targeted investment in infrastructure, including the 
development of open-source tools and International 
Centers of Excellence. The participants were generally 
optimistic about the trajectory of Compressed Sensing 
research and expect continued research will meet the 
challenges over the next 10 and 15 years.  The specific 
milestones and time frame for reaching the goals is:

10 year goals 
• Sensing+X or Task Oriented Sensing  
• Model driven signal acquisition  
• New models, with a particular emphasis on the 

global geometry of data, to support development 
of non-convex/nonlinear optimization  

• Adaptive learning, with a particular emphasis 
on systems with a human in the loop  

• New methods of data dependent regularization  
• New interfaces between modeling 

and computation 

15 year goals
• Robust data fusion  
• Non-convex optimization  
• New methods of predicting performance, 

with a particular emphasis on deep learning  
• Architectural principles for networked 

data processing systems

Continuing goals
• Model-based simulated data  
• Common test frameworks, from 

data sets to competitions  
• Interdisciplinary research programs that 

encourage theorists and domain scientists 
to collaborate on building systems 

These research goals draw from the disciplines of 
electrical and computer engineering, statistics, 
computer science and mathematics. Therefore, an 
integrated intellectual and capital investment in 
these disciplines, from the theory to the domain 
application, is critical for the advancement of 
knowledge and leadership in data science.

It has never been more important to understand first, 
what information is necessary to operate and compete; 
and second, how this information is sensed and 
applied. Investment in basic science is essential to staying 
ahead of the volume at which data is becoming accessible. 

“It has never been more important to understand first, what 
information is necessary to operate and compete; and 
second, how this information is sensed and applied.”
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Introduction
high energy physics depends mOre and mOre On 
massive data sOurces such as the Large Hadron Collider 
and Large Synoptic Survey Telescope. The latter is 
about to transform our understanding of the dynamic 
universe. Personalized medical care depends on detailed 
individually collected data, very often including epigenetic 
data merged with demographic and environmental 
data. Environmental research depends on ever more 
sophisticated observational data coupled with large 
model-generated datasets. Internet communication can 
be defined as a graph with billions of nodes. Tracking 
and predicting the evolution of these kinds of graphs 
is one of the grand challenges of modern computer 
science. In fact, the central issue across a broad spectrum 
of science is specifying what information is needed to 
predict the evolution of large complex systems, and 
answering how this information is obtained and applied.

US leadership of the global services economy 
depends on the ability to analyze data at massive 
scale, to distill information quickly, and to act on 
it rapidly with greater insight than an adversary. 
Moreover, all of this must be done with consistency. 

Advances in data science can dramatically alter 
how data is sensed, stored, interpreted and acted 
upon, and these developments will in turn have 
fundamental implications for national security 
and US scientific and economic leadership.

We are living in the middle 
of a data revolution.

The Large Synoptic Survey Telescope, in construction 
on the Cerro Pachon Mountain in Chile will generate 
30 terabytes of data a night, every night, for ten years.

As massive as the Internet has become, it will be dwarfed 
by the Internet of Things that is starting to take shape, 
where all devices are equipped with diverse sensors and 
communicate. (image courtesy of wordstream.com)

4 Billion  
Connected People

4 Trillion  
Revenue Opportunity

25 +  Million  
Apps

25 +  Billion  
Embedded and Intelligent System

50 Trillion  
GBs of Data
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Scale and the Data Dilemma 
scale changes the face Of sOciety. The introduction of 
the assembly line enabled Henry Ford to cut car prices 
and create a mass market. The US mastered scale and 
became the preeminent manufacturing economy. In 
similar fashion, success and failure in the modern era 
is a function of excellence in information at scale. The 
key to future success is to be able to access data, to distill 
information from such data fast, and to act on it fast 
with greater insight than the competition. Perhaps most 
importantly, all of this must be done with consistency.

The world of science used to be a place where it 
was difficult to collect data. Sensing was part of 
the research challenge. The science community 
developed sophisticated tools for sorting outliers 
in small data sets. That world is passing—today 
we are drowning in data streams and we need to 
develop the computational science necessary to sense 
smart and to distill information at massive scale. 

What constitutes massive scale? The Large Synoptic 
Survey Telescope, in construction on the Cerro Pachon 
Mountain in Chile, will generate 30 terabytes of 
data a night, every night, for ten years. The recently 
started BRAIN initiatives are producing terabytes of 
data a day, even for relatively small 1mm cubic brain 
regions. Internet communication defines a graph 
with billions of nodes. Tracking and predicting the 
evolution of such graphs as they evolve is one of the 
grand challenges of modern computer science. There 
is currently an estimated 3.8 trillion photographs, 
10% of them taken in the last year. Facebook has 
about 140 billion images with about 300 million new 
images a day. YouTube contains in the order of 120 
million videos and 72 hours of video uploaded every 
minute. This is of course data, but not necessarily 
information, and certainly not actionable information.

Numerous additional examples exist in many disciplines. 
One such example is the Department of Veterans Affairs 
Office of Research & Development’s Millions Veterans 
Program (MVP). The goal of this national voluntary 

research program is to study how genes affect health. 
To do this, MVP will build one of the world’s largest 
medical databases by safely collecting blood samples 
and health information from one million Veteran 
volunteers. Data collected from MVP will be stored 
anonymously for research on diseases like diabetes, 
cancer, and post-traumatic stress disorder. Google, along 
with Stanford and Duke University are also collecting 
large amounts of health data in MVP’s Baseline program. 
Meanwhile, Apple’s Open Source Research Kit is driving 
a revolution in global medical research participation.

In education, some states such as North Carolina provide 
pupil information under strict privacy restrictions in 
order to conduct research toward improving child 
wellbeing; such data can be combined with medical 
records as well. Some countries even curate all of their 
public education data for research purposes. For instance, 
Plan Ceibal in Uruguay, implementing the “1 to 1” 
model to introduce Information and Communication 
Technologies in primary public education. In four years, 
Plan Ceibal delivered 450,000 laptops to all students and 
teachers in the primary education system and no-cost 
Internet access throughout the country, with all the data 
now being curated for unique child wellbeing studies.

Most data numbers are astonishing. It is expected 
that by 2020 the amount of digital information in 
existence will have grown from 3.2 zettabytes today 
to 40 zettabytes. Every minute we send 204 million 
emails, generate 1.8 million Facebook likes, and 
send 278 thousand Tweets. Google alone processes 
on average over 40 thousand search queries per 
second, making it over 3.5 billion in a single day. 

90% of Google’s data was created in the last 2 years. 
To go from data to decision will require excellence 
in judicious data selection, sensing the environment, 
marshaling data, systems and software for storage 
and processing, data analysis, and data visualization. 
These functions form a figurative chain and excellence 
is required of every link. Once the chain is in place, 
it is possible to start from a data source and some 

Google alone processes on 
average over 40 thousand 
search queries per second.

Making it over 3.5 
billion in a single day.

x 1,000

x 10,000,000
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“The weakest link in the data 
science chain is the basic 
science that will reveal the 

structure of multimodal data 
in high dimensional space 
so that we can make use 
of that structure in order 
to make decisions, from 
acquisition to action.”

application of specific knowledge and to provide insight 
in seconds, hours, days or weeks rather than months, 
years or not at all. The chain is of course not necessarily 
linear/sequential, and not a feed forward system, but 
an integrated one where all components benefit and 
influence each other. “Don’t sense what you are not 
going to use” describes how data analysis should feed 
data acquisition, and the reduction in data itself can 
help the processing, analysis, and visualization. 

We have a new Renaissance paradigm. While we 
should not expect revolutionary advances to result 
from an individual Leonardo DaVinci who knows 
and integrates everything, resulting in revolutionary 
inventions, we need to have DaVinci-type teams 
and collaborations, that leverage expertise in 
all the various data science components.

The weakest link in the data science chain is the basic 
science that will reveal the structure of multimodal 
data in high dimensional space so that we can make 
use of that structure in order to make decisions that 
encompass acquisition to action. Without investment 
in multidisciplinary basic science and long-term 
paradigms, we will simply strand all the investments 
in physical infrastructure that we have made and the 
US will lose strategic and economic leadership.

It is under this pretext that 30 researchers met at Duke 
University on January 11th and January 12th to discuss 
the future direction of compressive sensing and the 
integration of sensing and processing fields. The purpose 
of the meeting was to explore current and projected 
issues, topics, and ideas that address the scale and scope 
of information processing at scale. This report represents 
the product of these discussions and attempts to portray 
consensus opinion regarding the salient challenges 
and trajectories presented during the workshop. 

The debut of Pope Francis was recorded for 
posterity by thousands of eyewitnesses packing 
St. Peter’s Square. But eight years earlier, there 
was nary a cell phone camera in the crowd 
when Pope Benedict assumed the papal throne, 
as series of remarkable then-and-now photos 
reveal. (image courtesy of nydailynews.com)
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Recent Advances in Data Science and Sensing
the wOrkshOp discussed develOpments in 
bOth the applied and basic science areas Of 
compressive sensing and the integration of sensing 
and processing research. This section highlights 
some of those discussions and offers context to 
where the future of the field may be headed. 

Signal Acquisition
data acquisition is no longer a fundamental 
bottleneck. Radar and camera hardware have become 
physical front ends for massive signal processing 
problems, leading to algorithms that take full advantage 
of the physics of acquisition. New developments within 
image processing include the STORM microscope 
(Nikon Instruments Inc.), the proof of concept single 
pixel camera (Rice University), the Coiffman/Golay 
camera, the DARPA funded gigapixel camera (Duke 
University), movie acquisition in cryo-tomography, 
and array tomography for brain data acquisition 

(Stanford University and the Allen Institute). 
These are just a few examples, complemented by 
data simultaneously acquired my millions of users 
with consumer-grade devices in their pockets.

The recognition that many signals of interest have 
sparse representations has inspired development of 
wavelets and compressed sensing, leading to a modern 
sampling theory that is changing the technology 
landscape. Examples include faster MRI scanners 
and video cameras. More recent developments 
include the emergence of nonlinear methods that 
capture instantaneous frequency and are useful in 
analyzing almost periodic data such as ECG data. 

The sampling budget itself can be reduced by adaptive 
sensing, where the next sample decision depends on 
the current state of knowledge. Adaptive sensing can 
be fully automatic, or include a human in the loop, 

thereby providing a way to scale 
the impact of limited subject 
matter expertise. For example, it 
is possible to start from a large 
unexplored imagery dataset, to 
have an analyst select an image 
of interest, and to return novel 
images from the dataset that 
are matched to the mission.

Models
Signal models are fundamental 
to the question of what 
information is necessary 
to obtain and of how that 
information is applied. Models 
connect data to decision, 
providing a common thread 
that links data acquisition, 
staging and storage, data 
analysis and visualization, 

and magnifies the impact of advances in individual 
blocks. Models also serve to integrate all the disciplines 
that play a role in data science—from the physics 
of data acquisition to mathematical methods of 
data analysis, and to domain-specific expertise. 

Advances in compressed sensing have reduced data 
acquisition volumes by adopting more advanced signal 
models. They have also brought fundamental change 
to other blocks in the signal processing chain. The 
transition from subspace models to union of subspace 
models has resulted in replacement of classical linear 
methods of data analysis by those based on convex 
relaxation. These developments have breathed new life 
into convex optimization, leading to new algorithms 
and new geometric methods of performance analysis.

Neural network from brain slice acquired by array 
tomography, one of the novel image acquisition 
techniques producing tera-bytes of data a day.

Part of a DARPA ARGUS-IS image of Quantico Marine Corps Base 
in Virginia (2nd row), with two targeted areas illustrating the six 
inch resolution of the camera (1st row). (image courtesy of DARPA)
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Engineering practice in many important areas 
has been fundamentally changed by applying the 
power of convex relaxation to the new data models. 
Examples include fast MRI acquisition, phase retrieval, 
image denoising, video and motion segmentation, 
as well as recommendation systems such as the 
NETFLIX movie recommendation system. 

Algorithms
It is necessary that a model is expressive, but it is 
essential that a model affords efficient computation. 
Algorithms provide the computational thread that 
links data acquisition, staging and storage, analysis and 
visualization. Once this thread is in place, it is possible 
to start from a data source and some specific knowledge 
of the application and to provide insight in hours, 
days or weeks rather than months, years or not at all. 

The data science community has developed a very 
successful approach to attacking hard problems: 
First, find a tractable convex surrogate, second 
minimize the surrogate, and then prove that for well-
structured instances the solution is accurate. It has 
also developed a suite of extraordinarily effective 
algorithms; including Interior Point methods, proximal 
gradient and its variants, augmented Lagrangian and 
ADMM, re-discovery and extensions of Frank-Wolfe, 
and efficient constrained matrix factorization. 

Architecture
The data to decision pipeline combines information 
that is present in signals at different scales. 
Extraordinary empirical advances in image classification 
have resulted from the transition of handcrafted features 
and bag-of-words classifiers to deep neural networks 
that learn hierarchies of features. These advances are 
motivating the development of new mathematical theory.

The recent direct detection of gravitational waves 
was enhanced with use of a wavelet signal processing 
framework developed by Ingrid Daubechies and 
her colleagues.  [Abbott, et al. 2016 Phys Review 
Letters, DOI: 10.1103/PhysRevLett.116.061102]
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Conceptual Challenges
the data tO decisiOn challenge is illuminating new 
research directiOns in information theory, statistics, 
mathematics, machine learning, and control. For 
example, information theory was developed for the 
asymptotic limit of large block lengths. New theory is 
needed for the finite block length regime. We lack solid 
understanding of what is possible in the limit of runtime 
approaching zero, power consumption approaching 
zero, and data complexity becoming unbounded. We 
describe some of the critical challenges discussed at the 
workshop below, following the same template as before.

Signal Acquisition
The rate at which digital data is becoming accessible 
is increasing rapidly. Data sets are becoming more 
massive, more complex, and more difficult to annotate. 
New data types are emerging related to personal 
health, social networks, and human behavior, that are 
challenging our conceptions of privacy and security.

New statistical methods are required to answer 
the question of when to collect more data and 
how to weight the data that has been collected. Of 
particular interest is adaptive sensing when multiple 
modalities are present, where potential value is 
compromised by the fragility of modeling assumptions, 
and by errors and biases in data collection. Also of 
particular interest are small sample regimes with 
rare events, missing data, and corrupted data. 

The challenges associated with distributed and 
multimodal sensing need to be resolved. New architectural 
principles are needed to answer the question of which 
device will be responsible for sensing, how sensing 
will be carried out, and how individual results will be 
combined. New methods of analysis are required that 
assess value / sample, / joule, / Hz, / flop, / nm, and 
/ bit. New theory is needed that defines and bounds 
privacy while still enabling distributed processing.

In areas such as face recognition, data will always 
be highly variable and methods need to account for 
occlusions and variations in pose and lighting. A first 
step toward addressing data quality issues is to develop 
solutions that are specific to a type of deformation 
associated with a class of applications. Despite extensive 
research, analog to digital conversion remains a roadblock 
in applications that require high sampling rates and high 

bandwidth. This leads to high power and high cost that 
blocks development of new technologies such as the 
cognitive radio. Developing signal specific methods of 
analog to digital conversion may provide a way forward.

Models
Convex optimization has become the workhorse 
of data analysis, but when models are made more 
expressive by adding in constraints like non-
negativity or structure in matrix factorization, these 
models become non-convex, and data analysis 
becomes less tractable. Understanding the trade 
off between expressiveness and computational 
complexity would be a first step in expanding 
the concept of model-validation to encompass all 
elements of the pipeline from data to decision. 

Algorithms
As models become more expressive, the data 
landscape becomes non-convex, and new methods 
are needed to understand and to navigate 
local minima. Many important problems fall 
outside the scope of known convex methods. A 
particularly important example is deep learning, 
where measures of performance that depend on 
sample complexity and the number of levels in the 
convolutional network have yet to be developed.

The field of non-convex optimization is not yet 
well understood. The most widely used algorithm 
is (stochastic) gradient descent; even here we 
lack methods to quantify the suboptimality of 
local minima, principles for selecting the starting 
point, and estimates of what might be gained 
by exploring alternative starting points. This 
interplay between modeling and algorithms 
demonstrates the importance of managing 
the data science pipeline as a whole.

Dictionary-based methods in CS involve non-convex 
bi-linear optimization. These kinds of problems are 
closely related to semidefinite programs (SDP), and 
in particular to the closely related problem of phase 
retrieval. SDPs, like dictionary learning problems, 
are now commonly being solved using non-convex 
bi-linear approximations rather than full-scale 
convex semidefinite relaxations. Such non-convex 
formulations allow problems to be solved at a much 
larger scale than before, although with weaker 
guarantees of optimality. The idea of non-convex 
optimization has been present for a long time in 
the machine learning community, where it’s known 
that we are able to get good solutions to non-convex 
problems like deep nets using gradient methods and 
other heuristics. (courtesy of Prof. Thomas Goldstein.)

Compressive Sensing

Low-Rank
Approximation
& Relaxation

Machine/Deep Learning:
Neural Networks

Large-Scale Computing

Semidefinite
Programming

Phase Retrieval

Non-Convex
Optimization

Non-Convex Problems in Data Science
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The combined talents of humans and computers, 
when working together in partnership and symbiosis, 
will be significantly more creative than any computer 
or human working alone. Integrating human experts 
into a variety of data science pipelines will expand our 
understanding of how human speed and capacity limits 
the potential of human-machine co-processing.

Architecture
Distributed architectures for data processing integrate 
the results of local computations. In applications of 
deep learning to image classification, local features are 
combined to produce higher level features. Methods have 
been developed for reasoning about information flows in 
communication networks, but we have not yet developed 
methods of reasoning about equivocation in data 
processing architecture. A first step might be to develop 
separation principles such as spatio-temporal factorization.

Of particular interest is the challenge of understanding 
deep learning. As deep convolutional networks achieve 
more empirical success, it becomes more important to 
be able to explain why they are effective. It is natural to 
ask whether more than a hundred layers are necessary, 
how much training data is required, and whether we 
should be concerned about false positives. The use of 
deep learning in mission critical applications will be 
limited until these questions are adequately addressed.

Integration of human and machine will improve scientific discovery. (courtesy of Prof. Rebecca Willett)

Example of a deep learning architecture for image analysis. (courtesy of NVIDIA)
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Trajectories for Compressed Sensing Research
we nOw present specific areas and initiatives that 
wOrkshOp participants cOnsidered the trajectOry 
Of research necessary to meet data science research 
challenges of future decades. A time horizon (10 or 
15 years) is provided to offer a general sense of how 
close the field is to achieve a specific research goal. 
The areas are also classified as either Science (S), or 
Technology (T), or both (S&T), further stressing the 
main bottlenecks and where the main progress is needed. 

10 Year Horizon:
Sensing+X or Task Oriented Sensing (S&T): 
Compressed sensing has focused on reconstruction 
of generic sparse signals, but new directions with 
great promise involve the detection of very specific 
signals and sensing of signal attributes. The covariance 
matrix or power spectrum is one example. Potential 
applications include development of custom MRI 
focused on detection of specific pathologies such 
as brain tumors and cameras just to detect faces. 
Significant gains in sensing performance can be 
expected from adoption of more parsimonious goals.

Model Driven Signal Acquisition (S&T): Analog-to-
digital converters (ADC) remain a major bottleneck. 
The workshop participants see an opportunity to take 
advantage of data models to meet the challenge of 
designing systems that are small, cheap, low power, 
and compact. Furthermore these systems should enable 
fast acquisition, improved resolution, and recovery of 
targeted information at significantly reduced bandwidth. 
These objectives will require co-design of: analog and 
digital components, the data model, and downstream 
optimization. From a theoretical perspective, the study 
of these signal processing architectures is an opportunity 
to unify sampling and rate distortion theory. 

What to Model (S): Big data dominates discussion 
of data science but modeling small data is 
equally challenging and important for learning 
parameters. The consequences of model mismatch 
for performance sensitive applications are not yet 
fully understood. An emerging challenge is that of 
modeling the human in the loop, where issues like 
latency, fatigue, and bias need to be considered.

More attention has traditionally been paid to modeling 
the signal of interest than modeling the background 
against which detection takes place. However it 
is much more challenging to detect a person of 
interest in a subway station than to detect the same 
person in a photography studio. This suggests an 
emphasis on modeling both background clutter 
and signal of interest. Geometric and statistical 
methods, as well as learning, play a role here.

New developments in sequential experimental design 
(sequential adaptive) are needed for applications in 
healthcare and personalized medicine. This is a clear 
example where sensing can be expensive and task-
dependent adaptive and compressive sensing is a must.

New Methods of Regularization (S): This includes 
development of algorithms for capturing salient 
properties of large data sets in sketches, and 
development of data-dependent regularizers. The 
objective here is a compressive sensing framework in 
which computational algorithms are able to extract 
and take advantage of specific data structure.

The Interface between Modeling and Computation 
(S): Convexity provides an interface that makes it 
possible to choose from a class of models and choose 
from a class of optimization algorithms. It has encouraged 
experimentation on both sides of the interface. New 
signal representations, new models, and new interfaces 
(separation principles) are needed to realize the potential 
of non-linear optimization. The objective here is to 
develop a data to decision pipeline that is able to take 
full advantage of new methods in optimization.

Again it is important to learn from examples in 
developing new methods of regularization. Some 
examples should involve humans in the loop.

(courtesy of Prof. Yonina Eldar)
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15 Year Horizon:
Robust Data Fusion (S): A theoretical framework is 
needed for robust data fusion to support data acquisition 
from multiple sources and modalities and to quantify 
uncertainty in such data. Models that capture the 
geometry of data are needed to describe complex sensing 
environments that are heterogeneous, dynamic, and 
multiscale. The objective here is a compressive sensing 
framework that encompasses adaptive sensors that 
manage different local tasks. This framework should 
take advantage of opportunities presented by processing 
delay and by the multimodal and heterogeneous data.

Development of Non-Convex Optimization (S): 
We need to understand what types of structure we can 
recover with guarantees, and how these structures might 
be combined. Factorization is a path to divide and 
conquer solutions and matrix factorization might be a 
good benchmark problem for non-convex methods. 

How to Predict Performance (S): Some algorithms 
and models empirically appear optimal for large datasets 
(e.g., deep neural networks) and some for small datasets 
(e.g., random forests and sparse modeling). The objective 
here is to develop a compressive sensing and data analysis 
framework that predicts performance for all sizes of data. 

It is important to listen to the success of ad-hoc 
techniques (deep learning being one of them). The 
challenge is to understand empirical success. By 
working on the fundamentals, we should be able 
to not only understand why ad-hoc techniques 
work, but also how to improve them. To this end, 
it might be helpful to derive negative examples, 
including some where there is a human in the loop 
and some where limited training data is available.

How to Measure Performance of Algorithms (S): The 
objective here is a framework for performance analysis 
that encompasses new methods of optimization and 
new computer architectures for implementation. It is 
important to match performance measurement to task, 
e.g., go beyond often used average performance metrics 
that are not useful for critical high-risk operations.

Development of dual certificates for convex relaxations 
is a promising path to upper bounds on performance.

Average/mean performance over a large testing sample 
may not always be the most appropriate metric. In 
medicine and autonomous vehicles, the number of 
false positives is certainly more critical. Theory is 
needed for more challenging performance metrics.

There is some evidence to suggest that certain non-convex 
optimization problems become tractable when the input 
data are large and random. We need to understand the 
extent to which we can simply apply efficient heuristics 
to data without worrying about convergence.

Algorithms also need to take into account 
the computer architecture where they will be 
implemented. More interaction is needed between 
modeling and algorithms and hardware teams.

Development of Architectural Principles (S): We need 
to develop methods of integrated sensing and processing 
that parallel communication networks. We need to 
understand what the results of local processing should 
be, and how they should be combined to accomplish 
a global inference objective. We need to understand 
the advantages of active learning in finding an optimal 
classifier with less human assistance. Finally we need to 
incorporate processing constraints such as privacy and 
time bounded computation, energy, and communication.
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Investments in Infrastructure
The theoretical and algorithmic developments mentioned 
before can’t happen in a vacuum. There is a clear 
need to invest in infrastructure that will support such 
developments. The workshop participants discussed 
the infrastructure necessary to meet the challenge. 

Datasets and Competitions
Datasets such as FERET, MNIST, COIL, YaleFaceB, 
Caltech, PASCAL, and ImageNet have proved 
fundamental both to evaluating progress and stimulating 
development of new theory and algorithms. These 
datasets have mostly appeared in image processing 
and computer vision, though exist in other areas such 
as audio processing. Designing open datasets in other 
areas, and maintaining them dynamically, is challenging, 
but a worthwhile infrastructure investment. It is 
important to note that those datasets do not necessarily 
need to be shared, in case for example of privacy or 
confidentiality, the community can access them via 
virtual machines for algorithm testing. The community, 
industry, or the government can own the datasets. 

It is interesting to note that the above datasets not 
only advanced the research in a given application, but 
also opened the door to new or significantly increased 
activities in others—image processing and analysis 
are examples. Research from the sixties to the nineties 
focused on local tasks, such as Image Denoising, image 
inpainting, image compression, edge detection, and 
deconvolution. Since the nineties, the focus has been 
high-level tasks. The high-level tasks research began 
with pattern recognition at different scales, and then 
moved to general object classification, following by 
captioning of image and video sources. While data 
and standard datasets are not the only reason for this 
evolution, they have certainly become core contributors.

Closely related to this is the topic of organizing open 
competitions for major challenges. Among the most 
famous are the NETFLIX movie recommendations 
competition and multiple DARPA robotics challenges. 
Some of these challenges were instrumental in 
development of self-driving vehicles. Other areas such 
as protein folding have been running competitions 
very successfully. The same can be said for the 
ImageNet competition in computer vision. There 
may be disagreement on the ideal format for these 
competitions, but there is complete agreement on 
their value in advancing knowledge. Promoting 
design competitions that challenge the community 
to find the best way to sense certain data to achieve 
a specific pre-defined task is recommended.

Competitions can be long-term (10-15 years) grand 
challenges with intermediate targets. Such long-
term challenges will also encourage collaborations 
to form along the way. Incorporating a specific 
task, such as automatic screening of a particular 
disorder, will encourage development of end-to-end 
solutions that combine sensing, machine learning, 
and domain-specific performance metrics. 

Competitions to develop new algorithms that are 
fundamental to all data science applications would have 
a broad impact. For example, it will be outstanding 
to have by 2030 an algorithm that can multiply two 
arbitrary n×n matrices in order n2 log(n) operations. 
Admittedly, this would not only have a major 
impact on compressed sensing, but on the entire field 
of numerical linear algebra (since it would give rise 
to SVDs, QRs, etc. with the same complexity) and 
for Scientific Computing at large. A competition to 
achieve this capability would drive research in this 
area and potentially encourage collaboration. 

Areas like radar signal processing lack benchmark 
datasets against which new algorithms can be measured. 
Development of common infrastructure might 
encourage a community of theorists and experimental 
researchers that listen and learn from each other.

Open Source Data Science
Long ago, the world had to program in very low-
level hardware oriented language. Consequently, 
programming was restricted to specialists. Programming 
has evolved, and more and more advanced languages 
have been developed, from Pascal to C++ to MatLab, 
opening the door to non-experts to program some 
of the most extremely sophisticated hardware and to 
develop complex algorithms. One could consider the 
same happening with algorithms in the area of data 
science. Numerous efforts in academia and industry 
are geared towards making data science transparent to 
the user, or at least building the basic infrastructure 
such that data science becomes often like building 
Lego constructions (APIs for data science). Investing 
in such a direction will make significant progress in 
the applications of data science and the integration of 
sensing and processing in particular. Projects like NEXT 
(University of Wisconsin)—an open source cloud-
based system for integrated sensing and processing and 
active machine learning—removes the burden of GUI, 
experiments, database, and the computational backend 
from the researcher, while reducing barriers to entry.
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International Centers of Research
cOmpanies like facebOOk and Openai 
have invested Orders Of magnitude mOre 
in ai than has the US government. 

Google, Facebook and Microsoft constitute International 
Centers of Excellence. Industry is motivated by self-
interest rather than the national interest, but finding 
ways to collaborate would accelerate the translation 
of theory to practice and would enhance training of 
graduate students. Today academia is losing talent to 
industry, and though this can be viewed positively, 
the flow of talent cannot be sustained indefinitely. 

Academic Centers of Excellence would provide 
a counterweight. They would bring a focus on 
emerging applications, such as mobile applications 
for community health. They would also provide 
opportunities for interdisciplinary teams to form and 
develop end-to-end solutions. One could also imagine 
opportunities to partner with national laboratories on 
applications related to energy and the environment. 

The recently created Turing Institute,  created by the UK 
government with significant industrial collaboration, 
is one center that moves in this direction and can serve 
both as a learning example and an international partner.

Photo of The British Library where the Alan Turing Institute is headquartered.
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Conclusions
lOOking ahead tO 2030, we are certain tO be 
drOwning in data, even if we are only able to imagine 
a fraction of the data types. In spite of initial success 
stories, understanding such data, developing models 
and algorithms to analyze data, and processing the 
data in a resources-efficient fashion are all challenges 
that go way beyond current available tools.

This report describes a trajectory of research 
that focuses on new data models, optimization 
techniques, performance metrics and architecture 
designs to meet these challenges in next 10 and 15 
years.  Participants expect these developments to 
have significant applicability for today’s emerging 
applications like personal health monitoring, automated 
transportation, social networks and group behavior. 
Each new application illuminates the research frontier 
in data science, and not always in the same way. 

Participants also outlined the infrastructure necessary 
to support the research development, like open and 
benchmark datasets and new competitions that can drive 
innovation. They conclude that long-term investment 
is needed to ensure that the research meets its potential 
and avoids being outflanked by new developments. 
The return on investment for individual elements 
should be measured in terms of the effectiveness 
of the end-to-end data to decision pipeline.
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Glossary
Adaptive sensing – Sensing actions are guided by information 
gleaned from previous measurements. 7, 9

Analog to digital converters – A device that converts a continuous physical 
quantity to a digital number that represents the amplitude of the quantity. 9

Compressed sensing (alt. compressive sensing) – A method of capturing 
attributes of a signal with very few measurements. 6, 7, 11, 13

Convex function – A continuous function whose value at the midpoint of every interval 
in its domain does not exceed the arithmetic mean of its values at the ends of the interval.

Convex optimization – The problem of minimizing 
a convex function over a convex set. 7, 9

Data – A set of values of qualitative or quantitative 
variables. 4, 5, 6, 7, 8, 9, 10, 11, 13, 15

Data compression – Encoding information with fewer 
bits than the original representation.

Data models – Organize data elements and standardize 
how the data elements relate to one another. 11

Data science – An interdisciplinary field dealing with processes and 
systems that extract information from data in various forms. 6, 8, 9

Deep neural networks – A set of algorithms that attempt to 
model high-level abstractions in data using multiple processing 
layers that employ non-linear transformations. 8, 12

Distributed sensing – sensing done with multiple sources

Epigenetic – Relating to or arising from non-genetic influences on gene expression. 3

Global minima – The smallest overall value of a function over its entire range.

Local minima – The minimum of a function within some neighborhood. 9

Multimodal sensing – sensing that includes more than one modality, 
for example RGB and infrared data or video for audio data. 9

Non-convex function – A function that is not convex.

Non-convex optimization – The problem of minimizing 
a non-convex function over a given set. 9, 12

Non-negative matrix factorization – A group of algorithms where a 
matrix V is written as the product of two matrices W and H, with the 
property that all three matrices have no negative elements. 9

Open source – Software for which the source code is exposed and freely available. 5, 13

Optimization – The selection of a best element from 
some set of available alternatives. 11

Regularization – The process of introducing additional information in 
order to solve and ill-posed problem or to prevent over fitting. 11

Sensing – Detecting events or changes in an environment and 
then providing a corresponding output. 5, 11, 12, 13

Smart sensing – sensing guided by information, task and decisions. 4

Sparse model – Organization in a lower dimensional space 
of values observed in high dimensional space. 12

Spatio-temporal factorization – Factorizing a function in 
terms of spatial and temporal factors or basis. 10

Subspace – A subset of a vector space that is closed 
under addition and scalar multiplication. 7

Supervised learning – The machine learning task of 
inferring a function from labeled training data.

Union of subspaces model – Signal coefficients that lie in certain subspaces are active 
or inactive together. The potential subspaces are known in advance, but the particular set 
of subspaces that are active in the signal support must be learned from measurements.

Unsupervised learning – The machine learning task of inferring a 
function to describe hidden structure from unlabeled data.
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Appendix I
Compressive Sensing Researchers

Helmut Bolcskei 
ETH Zurich, boelcskei@nari.ee.ethz.ch 
Communication Technology Laboratory 
PhD (1997), Electrical Engineering, Vienna University of Technology

Dr. Bolcskei’s research interests are in information theory, mathematical 
signal processing, machine learning, and statistics. 

He has received the 2001 IEEE Signal Processing Society Young Author Best Paper 
Award, the 2006 IEEE Communications Society Leonard G. Abraham Best Paper 
Award, the 2010 Vodafone Innovations Award, the ETH “Golden Owl” Teaching 
Award, is a Fellow of the IEEE, a 2011 EURASIP Fellow, a 2013-2014 Distinguished 
Lecturer of the IEEE Information Theory Society, and was an Erwin Schrödinger Fellow 
(1999-2001) of the Austrian National Science Foundation (FWF). Dr. Bolcskei has 
been a plenary speaker at several IEEE conferences and served as an associate editor 
of the IEEE Transactions on Information Theory, the IEEE Transactions on Signal 
Processing, the IEEE Transactions on Wireless Communications, and the EURASIP 
Journal on Applied Signal Processing. He was editor-in-chief of the IEEE Transactions 
on Information Theory during the period 2010-2013, and serves on the editorial 
boards of “Foundations and Trends in Networking”, “Foundations and Trends in 
Communications and Information Theory”, and the IEEE Signal Processing Magazine.

Alex Bronstein – http://www.cs.technion.ac.il/~bron/ 
Technion, Israel Institute of Technology, bron@cs.technion.ac.il 
Department of Computer Science 
PhD (2007), Computer Science, Technion.

Dr. Bronstein’s main research interests are theoretical and computational 
methods in metric geometry and their application to problems in computer 
vision, pattern recognition, shape analysis, computer graphics, imaging and 
image processing, and machine learning. He has authored over 120 publications 
in leading journals and conferences, over two dozen patents and patent 
applications, and the book Numerical geometry of non-rigid shapes. 

Bronstein’s research has been recognized by numerous awards, including the Kasher 
prize (2002), Thomas Schwartz award (2002), Hershel Rich Technion Innovation award 
(2003), Gensler counter-terrorism prize (2003), the Copper Mountain Conference on 
Multigrid Methods Best Paper award (2005), the Adams Fellowship (2006), the Krill 
Prize by Wolf Foundation (2012), and the European Research Council (ERC) Startup 
Grant (2013). Highlights of his research have been featured on CNN and SIAM News.

Robert Calderbank – http://ece.duke.edu/faculty/robert-calderbank 
Duke University, robert.calderbank@duke.edu 
Department of Computer Science 
PhD (1980), Mathematics, California Institute of Technology

Dr. Calderbank is the Charles S. Sydnor Professor of Computer Science at Duke 
University. Previous to joining Duke in 2010, he was a Professor of Electrical 
Engineering and Mathematics and Princeton University. In addition to his teaching 
background, Calderbank has been the Vice President for Research at AT&T and Bell 
Labs. At Bell Labs, Calderbank developed voiceband modem technology that was 
widely licensed and incorporated in over a billion devices. Together with Peter Shor and 
colleagues at AT&T Labs, Dr. Calderbank developed the group theoretic framework for 
quantum error correction. This framework changed the way physicists view quantum 
entanglement, and provided the foundation for fault tolerant quantum computation. 

Dr. Calderbank has also developed technology that improves the speed and 
reliability of wireless communication by correlating signals across several 
transmit antennas. Invented in 1996, this space-time coding technology has 
been incorporated in a broad range of 3G, 4G, and 5G wireless standards.

Dr. Calderbank is an IEEE Fellow and an AT&T Fellow, and he 
was elected to the National Academy of Engineering in 2005. He 
received the 2013 IEEE Hamming Medal for contributions to coding 
theory and communications and the 2015 Shannon Award.

Alexey Castrodad  
National Geospatial-Intelligence Agency

Yonina Eldar – http://webee.technion.ac.il/people/YoninaEldar/index.php 
Technion, Israel Institute of Technology, yonina@ee.technion.ac.il 
Department of Electrical Engineering 
PhD (2002), Electrical Engineering and Computer Science, MIT

Dr. Eldar’s research interests include technology development in the areas of 
signal processing, medical imaging, communications, sampling and ADC 
design, signal processing for optics and biology. Every year for the last 15 years 
of her career, she has received at least one accolade or award for her research. 
Most recently in 2016, she was awarded the IEEE Kiyo Tomiyasu Award “for 
development of the theory and implementation of sub-Nyquist sampling 
with applications to radar, communications, and ultrasound.”  In addition to 
her research, Dr. Eldar has been recognized as a distinguished lecturer, and 
in 2011, was selected as one of the 50 most influential women in Israel.
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Anna Gilbert 
University of Michigan, annacg@umich.edu 
Department of Mathematics 
PhD (1997), Mathematics, Princeton University

Dr. Gilbert’s research interests include analysis, probability, networking, and 
algorithms. She is particularly interested in randomized algorithms with applications 
to harmonic analysis, signal and image processing, networking, and massive 
datasets. In addition to her academic background, Dr. Gilbert has worked as a 
technical staff member at AT&T Labs-Research in Florham Park, NJ (1998-2004). 
She has received several awards, including a Sloan Research Fellowship (2006), 
an NSF CAREER award (2006), the National Academy of Sciences Award for 
Initiatives in Research (2008), the Association of Computing Machinery (ACM) 
Douglas Engelbart Best Paper award (2008), the EURASIP Signal Processing 
Best Paper award (2010), and the SIAM Ralph E. Kleinman Prize (2013).

Andrea Goldsmith  
Stanford University, andrea@ee.stanford.edu 
Department of Electrical Engineering 
PhD (1994), Electrical Engineering, University of California Berkeley

Dr. Goldmisth’s research interests include wireless information and communication 
theory, cognitive radios, sensor networks, “green” wireless system design, control 
systems closed over wireless networks, smart grid sensing and control, and 
applications of communications and signal processing to biology and neuroscience.

Andrea Goldsmith is the Stephen Harris professor in the School of Engineering 
and a professor of Electrical Engineering at Stanford University. She co-founded 
and serves as Chief Scientist of Accelera, Inc., which develops software-defined 
wireless network technology, and previously co-founded and served as CTO 
of Quantenna Communications Inc., which develops high-performance WiFi 
chipsets. She has previously held industry positions at Maxim Technologies, 
Memorylink Corporation, and AT&T Bell Laboratories. Dr. Goldsmith is a Fellow 
of the IEEE and of Stanford, and she has received several awards for her work, 
including the IEEE Communications Society and Information Theory Society 
joint paper award, the IEEE Communications Society Best Tutorial Paper Award, 
the National Academy of Engineering Gilbreth Lecture Award, the IEEE ComSoc 
Communications Theory Technical Achievement Award, the IEEE ComSoc Wireless 
Communications Technical Achievement Award, the Alfred P. Sloan Fellowship, 
and the Silicon Valley/San Jose Business Journal’s Women of Influence Award.

Tom Goldstein 
University of Maryland, tomg@cs.umd.edu 
Department of Computer Science 
PhD (2010). Applied Mathematics, University of California Los Angeles

Dr. Goldstein’s research focuses on the intersection of optimization, machine 
learning, distributed computing, and image processing.  He is interested in 
fast, low-complexity solutions to real-world model-fitting problems from data 
analytics and imaging. He seeks to develop massively distributed methods 
for analyzing big data, as well as simple efficient schemes for small embedded 
platforms. Dr. Goldstein is a recent Richard C. DiPrima Prize winner, which is 
awarded to one person every two years by the Society for Industrial and Applied 
Mathematics (SIAM) for outstanding research in applied mathematics.

Ronnie Hadani 
University of Texas, hadani@math.utexas.edu 
Department of Mathematics 
PhD (2006), Mathematics, Tel-Aviv University

Dr. Hadani’s research interests include Representation Theory, Theory of 
Algebraic D-modules, and applications to harmonic analysis, signal processing, 
three dimensional cryo-electron microscopy, and mathematical physics. He has 
recently been granted several patents, including “finite crystal oscillator” and 
“communications method employing orthonormal time-frequency shifting and 
spectral shaping.” He is also a co-founder of Cohere technologies Inc., a company 
that focuses on the development of advanced communication technologies. 

Babak Hassibi 
California Institute of Technology, hassibi@systems.caltech.edu 
Department of Electrical Engineering 
PhD (1996), Electrical Engineering, Stanford University

Dr. Hassibi’s research is in communications, signal processing, and control. He 
is currently interested in wireless networks and in genomic signal processing. 
In the wireless network area, Hassibi studies modeling issues, information-
theoretic questions, scheduling, protocols, and various performance 
criteria, etc. In the genomic signal processing area he researches real-time 
DNA microarrays, a novel technology that his lab has developed. 

Babak Hassibi is a Gordon M. Binder/Amgen Professor. He has received many 
awards, including the “Al-Marai Award for Innovative Research in Communication 
(2009),” “Presidential Early Career Award for Scientists & Engineers (2003),” and 
a National Science Foundation CAREER award (2002). In addition to his awards, 
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he is an Associate Editor for IEEE Transactions on Information Theory, an editorial 
board member for the Foundations and Trends in Communications and Information 
Theory, and an ONR Communications and Technology Review panelist. 

Michael Lustig – http://www.eecs.berkeley.edu/~mlustig/mlustig-cv.pdf 
University of California Berkeley, mlustig@eecs 
Department of Electrical Engineering & Computer Sciences 
PhD (2008), Electrical Engineering, Stanford University

Michael Lustig’s research focuses on medical imaging, particularly Magnetic Resonance 
Imaging (MRI), and very specifically, the application of compressed sensing to rapid 
and high-resolution MRI, MRI pulse sequence design, medical image reconstruction, 
and inverse problems in medical imaging and sparse signal representation. Dr. Lustig 
was the first to develop and demonstrate the application of compressed sensing to 
rapid MRI. Additionally, he developed parallel imaging reconstruction techniques, 
image artifacts reduction methods, motion estimation and correction techniques, 
novel RF-excitation pulses, rapid MRI pulse sequence design, and improved functional 
MRI techniques. Among other accolades, Dr. Lustig is the GE Healthcare Thought 
Leader recipient for “ground-breaking work in compressed-sensing MRI.”

Gonzalo Mateos – http://www.ece.rochester.edu/~gmateosb/cv.html 
University of Rochester, gmateosb@ece.rochester.edu 
Department of Electrical Engineering and Computer Science 
PhD (2012), Electrical Engineering, University of Minnesota 

Dr. Mateos’ research is on algorithms and analysis; specifically applications of statistical 
signal processing tools to dynamic network health monitoring, social, power grid, and 
Big Data analytics. His current research includes robust, distributed, and sparsity-
aware learning from high dimensional social data and spectrum sensing for wireless 
cognitive radio networks. Having recently attained his PhD, Dr. Mateos’ thesis 
was awarded the “Best Dissertation Award Honorable Mention.” The title of his 
submission was “Sparsity Control for Robustness and Social Data Analysis.” Mateos 
currently teaches Data Science and Stochastic Systems at the University of Rochester.

Andrea Montanari 
Stanford University, montanari@stanford.edu 
Department of Electrical Engineering & Department of Statistics 
PhD (2001), Theoretical Physics, Scuola Normale Superiore (Italy)

Dr. Montanari’s research interests include machine learning, high-dimensional statistics, 
graphical models, coding theory, and random combinatorial structures and optimization.

He was co-awarded the ACM SIGMETRICS best paper award in 2008. He 
received the CNRS bronze medal for theoretical physics in 2006, the National 
Science Foundation CAREER award in 2008, the Okawa Foundation Research 
Grant in 2013, and the Applied Probability Society Best Publication Award in 
2015. He is an Information Theory Society distinguished lecturer (2015-2016).

Robert Nowak 
University of Wisconsin, nowak@ece.wisc.edu 
Department of Electrical and Computer Engineering 
PhD (1995), Computer Science, University of Wisconsin

Dr. Nowak’s research interests include signal and information processing, machine 
learning, optimization, and statistics. Recently, Nowak has developed two highly 
successful apps in BeerMapper and NEXT that apply findings from his research.

He has earned numerous awards and accolades including the ECML-
PKDD award for best paper on Knowledge Discovery (2012), the Grand 
Award recipient of the Talbert Abrams Paper Award (2012) and the 
ERDAS Award for Best Scientific Paper in Remote Sensing (2012).

Henry Pfister 
Duke University, henry.pfister@duke.edu 
Department of Electrical and Computer Engineering 
PhD (2003), Electrical Engineering, UCSD

Dr. Pfister’s current research interests include information theory, 
channel coding, and iterative information processing with applications 
in wireless communications, data storage, and signal processing.

He has received the NSF Career Award in 2008, the Texas A&M ECE Department 
Outstanding Professor Award in 2010, and was a coauthor of the 2007 IEEE COMSOC 
best paper in Signal Processing and Coding for Data Storage. He is currently an associate 
editor in coding theory for the IEEE Transactions on Information Theory (2013-2016).

Ben Recht – http://www.eecs.berkeley.edu/~brecht/bio.html 
University of California Berkeley, brecht@berkeley.edu 
Department of Electrical Engineering and Computer Science 
PhD (2006), Applied Mathematics, MIT

Dr. Recht’s research interests include trying to find mathematical solutions 
to data analysis that bridge across scientific fields and applications. He is 
interested in devising algorithms that handle “noisy” and incomplete data.
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Ben is the recipient of a Presidential Early Career Awards for Scientists and 
Engineers (2014), an Alfred P. Sloan Research Fellowship (2012), the 2012 SIAM/
MOS Lagrange Prize in Continuous Optimization, the 2014 Jamon Prize, and 
the 2015 William O. Baker Award for Initiatives in Research. He is currently 
on the Editorial Board of the Journal for Machine Learning Research.

Galen Reeves  
Duke University, galen.reeves@duke.edu 
Department of Electrical and Computer Engineering 
PhD (2011), Electrical Engineering and Computer Science, Duke University

Dr. Reeve’s research interests lie at the intersection of signal processing, statistics, 
and information theory, with applications in compressed sensing, robust statistics, 
massive data storage and retrieval, neuroscience, and machine learning. He believes 
that with the “information glut upon us, many of the most important scientific 
and technological advances of the next several decades will follow from our ability 
to collect, understand, and communicate massive amounts of data.” An overall 
theme in his research is to draw upon mathematical tools from a wide variety of 
disciplines -- such as random matrix theory, convex optimization, statistical decision 
theory, and statistical physics -- to understand the limits of what is possible (and 
what is impossible) in problems of high-dimensional statistical inference, and also 
to figure out how to reach these limits using computationally practical methods. 
His Ph.D. dissertation used tools from information theory to provide a sharp 
characterization of the problem of sparsity pattern recovery in compressed sensing.

Tom Richardson – http://ethw.org/Thomas_J._Richardson 
Qualcomm 
Qualcomm R&D

Considered one of the world’s foremost experts on iterative decoding, Thomas J. 
Richardson, in conjunction with Rüdiger Urbanke, helped optimize data transmission 
rates for wireless and optical communications and digital information storage. To 
approach “Shannon’s limit,” which established the maximum rate for communications 
over a noisy channel, they expanded on low density parity check (LDPC) codes 
and provided new tools for understanding the complexities of iterative decoding 
procedures. The result has been reliable data transmission at rates close to channel 
capacity but with low complexities. Three landmark papers by Drs. Richardson 
and Urbanke appearing in the February 2001 issue of the IEEE Transactions on 
Information Theory successfully addressed the obstacles facing the development of 
capacity-approaching codes. Their work showed that LDPC codes could very closely 
approach the Shannon limit, showed how to design irregular LDPC codes and 
provided methods for efficiently encoding LDPC codes and they introduced the density 
evolution technique, on which most subsequent work on LDPC codes is based.

Justin Romberg 
Georgia Institute of Technology, jrom@ecegatech.edu 
School of Electrical and Computer Engineering 
PhD (2004), Electrical Engineering, Rice University

Dr. Romberg’s research interests include statistical learning and signal processing.

In 2008 he received an ONR Young Investigator Award. In 2009 he received 
a PECASE award and a Packard Fellowship, and in 2010 he was named a 
Rice University Outstanding Young Engineering Alumnus. In 2006-2007 he 
was a consultant for the TV show “Numb3rs” and from 2008-2011, he was 
an Associate Editor for the IEEE Transactions on Information Theory. He is 
currently on the editorial board for the SIAM Journal on Imaging Science.

Aswin Sankaranarayanan 
Carnegie Mellon University, saswin@andrew.cmu.edu 
Electrical Engineering Department 
PhD (2009), Electrical Engineering, University of Maryland

Dr. Aswin Sankaranarayanan’s research interests are in computer vision and signal 
processing. Specifically, his research focuses on developing computational tools and 
imaging architectures for high-dimensional visual signals—this encompasses ideas across 
multiple disciplines: compressive sensing, sparse approximations, multi-view geometry, 
computational imaging, non-linear signal models and reflectance properties of materials. 

Sankaranarayanan has received several awards including the Distinguished 
Dissertation Fellowship at the University of Maryland (2008-2009), Best 
Paper Award (2010), and the Future Faculty Fellowship Award (2009).

Guillermo Sapiro 
Duke University, guillermo.sapiro@duke.edu 
Electrical and Computer Engineering 
PhD (1993), Electrical Engineering, Technion University (Israel)

Dr. Sapiro works on theory and applications in computer vision, computer 
graphics, medical imaging, image analysis, and machine learning. He 
has authored and co-authored over 300 papers in these areas.

Sapiro was awarded the Gutwirth Scholarship for Special Excellence in Graduate Studies 
in 1991,  the Ollendorff Fellowship for Excellence in Vision and Image Understanding 
Work in 1992,  the Rothschild Fellowship for Post-Doctoral Studies in 1993, the 
Office of Naval Research Young Investigator Award in 1998, the Presidential Early 
Career Awards for Scientist and Engineers (PECASE) in 1998, the National Science 
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Foundation Career Award in 1999, and the National Security Science and Engineering 
Faculty Fellowship in 2010. He received the test of time award at ICCV 2011.

Phil Schniter 
Ohio State University, schniter.1@osu.edu 
Electrical and Computer Engineering 
PhD (2000), Philosophy, Cornell

Dr. Schniter’s research interests are in signal processing for communication systems, 
adaptive filtering, estimation theory, blind equalization, and identification.

He has received the Lumley Research Award from the college of engineering at Ohio 
State (2005), Best Paper Award IEEE SPAWC conference (2005), the NSF Career 
Award (2003), and was granted an Intel Foundation Fellowship (1998-1999). 

In addition to his research, he has given numerous talks and presentations 
regarding sparse reconstruction, graphical model approaches to compressive 
inference, and advanced equalization techniques for wireless links.

Aarti Singh 
Carnegie Mellon University, aartisingh@cmu.edu 
Department of Machine Learning 
PhD (2008), Electrical and Computer Engineering, University of Wisconsin

Dr. Singh’s research goal is to “understand the fundamental tradeoffs 
between [computational efficiency and statistical optimality], and 
design algorithms that can learn and leverage inherent structure of 
data in the form of clusters, graphs, subspaces and manifolds.”

She is investigating how the tradeoffs between computational efficiency and statistical 
optimality can be further improved by designing interactive algorithms that employ 
judicious choice of where, what, and how data is acquired, stored, and processed. Her 
vision is to introduce a new paradigm of intelligent machine learning algorithms that 
learn continually via feedback and make high-level decisions in collaboration with 
humans, thus pushing the envelope of automated scientific and social discoveries. 

Dr. Singh’s research has been supported by grants from NSF, AFOSR, and NIH’s 
MIDAS Center at University of Pittsburgh, including NSF CAREER (2013) 
and BIG DATA awards and the AFOSR Young Investigator Award (2014).

Amit Singer 
Princeton University, amits@math.princeton.edu  
Department of Mathematics

Dr. Singer’s current research is focused on developing algorithms for three-
dimensional structuring of macromolecules using cryo-electron microscopy.

Mathematical interests: linear and non-linear dimensionality reduction 
of high dimensional data, signal, and image processing, spectral 
methods, convex optimization, and semidefinite programming. 

Professor Amit Singer has received the 2010 Presidential Early Career Award for 
Scientists and Engineers (PECASE), the highest honor bestowed by the U.S. 
government on science and engineering professionals in the early stages of their 
research careers. He is among 94 researchers at American institutions selected by 
the Office of Science and Technology Policy within the Executive Office of the 
President based on the recommendations of 16 federal departments and agencies. 
Singer also received a 2010 Sloan Research Fellowship for his research.

Thomas Strohmer 
University of California, Davis, lastname@math.ucdavis.edu 
Department of Mathematics 
PhD (1998), Mathematics, Universität Wien (Austria)

Dr. Strohmer’s research interests are in applied harmonic analysis, 
mathematics of information, numerical algorithms, mathematical signal 
and image processing, and high-dimensional data analysis.

He has recently published work titled “Accurate Detection of Moving Targets Via 
Random Sensor Arrays and Kerdock Codes,” “Remote Sensing Via Minimization” 
(Foundations of Computational Mathematics), and contributed to the Foreword, along 
with Dr. Yonina Eldar, in the IEEE Trans. Aerospace and Electronic Systems issue 50.

Joel Tropp 
Caltech, jtropp@cms.caltech.edu 
Engineering & Applied Science 
PhD (2004), Computational and Applied Mathematics

Dr. Tropp’s research interests include randomized algorithms for 
matrix analysis, architectures and algorithms for compressive 
sampling, matrix nearness problems, and data analysis. 
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Tropp was recently awarded the SPIE Compressive Sampling Pioneer Award 
(2015) and Thomson Reuters Highly Cited Researcher in Computer Science 
(2014). He was recently invited to provide an address at the SIAM Joint 
Mathematical Meetings (2015). In addition to these awards and distinctions, 
he has won numerous best paper awards, is a Sloan fellow, and a Presidential 
Early Career Award for Scientists and Engineers (PECASE) awardee (2008). 

Rene Vidal 
Johns Hopkins University, rvidal@jhu.edu 
Department of Biomedical Engineering 
PhD (2003), Electrical Engineering and Computer 
Sciences, University of California Berkeley

Dr. Vidal’s research areas include biomedical image analysis, computer vision, 
machine learning, dynamical systems theory, and robotics. He is particularly 
interested in the development of mathematical methods for the interpretation 
of high-dimensional data, such as images, videos, and biomedical data. He has 
developed methods from algebraic geometry, sparse and low-rank representation 
theory for clustering and classification of high-dimensional data, and methods from 
dynamical systems theory for modeling and comparison of time series data. 

Dr. Vidal is recipient of numerous awards for his work, including the 2012 J.K. 
Aggarwal Prize for “outstanding contributions to generalized principal component 
analysis (GPCA) and subspace clustering in computer vision and pattern recognition,” 
the 2012 Best Paper Award in Medical Robotics and Computer Assisted Interventions 
(with Benjamin Bejar and Luca Zappella), the 2011 Best Paper Award Finalist at 
the Conference on Decision and Control (with Roberto Tron and Bijan Afsari), 
the 2009 ONR Young Investigator Award, the 2009 Sloan Research Fellowship, 
the 2005 NFS CAREER Award and the 2004 Best Paper Award Honorable 
Mention (with Prof. Yi Ma) at the European Conference on Computer Vision.

Rachel Ward 
University of Texas at Austin, rward@math.utexas.edu 
Department of Mathematics  
PhD (2009), Computational Mathematics, Princeton University

Dr. Ward’s research spans mathematical signal processing, applied harmonic analysis, 
compressed sensing, theoretical computer science, and machine learning. She is currently 
funded by an NSF CAREER award and an AFOSR Young Investigator Program Award.

Rebecca Willett 
University of Wisconsin, willett@discovery.wisc.edu 
Department of Electrical and Computer Engineering 
PhD (2005), Electrical and Computer Engineering, Rice University

Her research interests include signal processing, machine learning, and large-scale data 
science. Specifically, inference from point process data, methods robust to missing data, 
high-dimensional data coupled with sparse and low-rank models, and streaming data.

Dr. Willett received the National Science Foundation CAREER Award in 2007, was 
a member of the DARPA Computer Science Study Group 2007-2011, and received 
an Air Force Office of Scientific Research Young Investigator Program award in 
2010. She was a recipient of the National Science Foundation Graduate Research 
Fellowship, the Rice University Presidential Scholarship, the Society of Women 
Engineers Caterpillar Scholarship, and the Angier B. Duke Memorial Scholarship.

John N. Wright 
Columbia University, johnwright@ee.columbia.edu 
Department of Electrical Engineering 
PhD (2009), Electrical Engineering, University of Illinois at Urbana-Champaign

Dr. Wright’s research is in the area of high-dimensional data analysis. In particular, 
his recent research has focused on developing algorithms for robustly recovering 
structured signal representations from incomplete and corrupted observations, 
and applying them to practical problems in imaging and vision. His work has 
received an number of awards and honors, including the 2009 Lemelson-Illinois 
Prize for Innovation for his work on face recognition, the 2009 UIUC Martin 
Award for Excellence in Graduate Research, a 2008-2010 Microsoft Research 
Fellowship, and the 2012 COLT Best Paper Award (with Wang and Spielman).
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Appendix II
Rapporteurs

Jordan Comins, Data Scientist 
Virginia Tech Applied Research Corporation, Jordan.comins@vt-arc.org

Brian Hider, Project Manager 
Virginia Tech Applied Research Corporation, brian.hider@vt-arc.org

Thomas Hussey, Senior Consultant 
Virginia Tech Applied Research Corporation, twhussey@flash.net

Logistics & Planning

Brian Hider, Project Manager 
Virginia Tech Applied Research Corporation, brian.hider@vt-arc.org

Katherine Peterson, Administrative Assistant 
Duke University, kathy.peterson@duke.edu

Government Observers

David Han, Office of the Assistant Secretary of Defense for Research 
and Engineering (Basic Science), david.k.han.civ@mail.mil

Jiwei Lu, Office of the Assistant Secretary of Defense for Research 
and Engineering (Basic Science), jiwei.lu.civ@mail.mil

Workshop Chairs & Report Authors

Robert Calderbank, Duke University

Guillermo Sapiro, Duke University
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Appendix III
Questions for Attendees

The two day workshop was organized around five plenary talks:

• Al Hero, “The need for new theory and new models”
• Rene Vidal, “Connecting Theory with Practice”
• Rob Nowak, “Integration of Sensing and Processing”
• John Wright, “Optimization”
• Yonina Eldar, “Historical Perspective on Sampling”

Each plenary was a survey talk, designed to stimulate small group discussions, each 
focused on a particular topic, with workshop participants rotating through the 
groups, and each group  periodically reporting on findings to all participants. Initial 
discussion was free flowing, with subsequent discussion more tightly focused. 

On the second day of the workshop, participants were 
asked to answer the following questions:

• What challenges should be addressed in the next 5, 10, and 15 years? 
• What long-term research investments are necessary?


